How many phases and phase transitions do exist in Gibbs adsorption layers at the air-water interface?

J Colloid Interface Sci

Venture Business Laboratory, Utsunomiya University, Yoto 7-1-2, Utsunomiya 321-8585, Japan.

Published: February 2007

Four different phases and four different first-order phase transitions have been shown to exist in Gibbs adsorption layers of mixtures containing n-hexadecyl dihydrogen phosphate (n-HDP) and L-arginine (L-arg) at a molar ratio of 1:2. These conclusions have been made from surface pressure-time (pi-t) adsorption isotherms measured with a film balance and from monolayer morphology observed with a Brewster angle microscopy (BAM). The observed four phases are gas (G), liquid expanded (LE), liquid condensed (LC) and LC' phases. Three first-order phase transitions are G-LE, LE-LC and LC-LC'. However, the thermodynamically allowed G-LC phase transition in a 1.2 x 10(-4) M mixture at 2 degrees C, which is below the so-called triple point, is kinetically separated into the G-LE and LE-LC phase transitions. The most interesting observation is that the homogeneous LC phase shows a new first-order phase transition named as LC-LC' at 2 or 5 degrees C. The LE and LC phases represent circular and fractal shaped domains, respectively, whereas the LC' phase shows very bright, anisotropic and characteristic shaped domains.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2006.10.071DOI Listing

Publication Analysis

Top Keywords

phase transitions
16
first-order phase
12
transitions exist
8
exist gibbs
8
gibbs adsorption
8
adsorption layers
8
g-le le-lc
8
phase transition
8
shaped domains
8
phase
7

Similar Publications

Freezing extends the shelf life of foods but often leads to structural damage due to ice crystal formation, negatively impacting quality attributes. Oscillating magnetic field (OMF)-assisted supercooling has emerged as a potential technique to overcome these limitations by inhibiting ice nucleation and maintaining foods in a supercooled state. Despite its potential, the effectiveness and underlying mechanisms of OMF-assisted supercooling remain subjects of debate.

View Article and Find Full Text PDF

Certain proteins and synthetic covalent polymers experience aqueous phase transitions, driving functional self-assembly. Herein, we unveil the ability of supramolecular polymers (SPs) formed by G4.Cu+ to undergo heating-induced unexpected aqueous phase transitions.

View Article and Find Full Text PDF

Currently, CsPbI quantum dots (QDs) based light-emitting diodes (LEDs) are not well suited for achieving high efficiency and operational stability due to the binary-precursor method and purification process, which often results in the nonstoichiometric ratio of Cs/Pb/I. This imbalance leads to amounts of iodine vacancies, inducing severe non-radiative recombination processes and phase transitions of QDs. Herein, red-emitting CsPbI QDs are reported with excellent optoelectronic properties and stability based on the synergistic effects of halide-rich modulation passivation and lattice repair.

View Article and Find Full Text PDF

The advancement of rapid-response grid energy storage systems and the widespread adoption of electric vehicles are significantly hindered by the charging times and energy densities associated with current lithium-ion battery technology. In state-of-the-art lithium-ion batteries, graphite is employed as the standard negative electrode material. However, graphite suffers from polarization and deteriorating side-reactions at the high currents needed for fast charging.

View Article and Find Full Text PDF

Objectives: Newly graduated nurses commence night shifts during a phase of heightened vulnerability to reality shock, exacerbating the challenges faced by these graduates. Therefore, this study aimed to identify the challenges experienced by newly graduated nurses when undertaking night shifts in order to help identify a strategy for supporting their adaptation to these shifts.

Methods: Semi-structured personal interviews were used to collect data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!