Of all cell types, motoneurons (MNs), are possibly the most difficult to maintain in culture, since their development and survival is conditioned by many factors that are still in the course of identification. This may also be the reason why they are difficult to transfect. We succeed to transfect these fragile cells with lipoplex [DOTAP:PC (10:1)-pGFP]-precoated coverslips. Here, we report that this original method, also termed 'surfection' does not perturbate MN development and survival while giving important transfection yield (15%). Lipofectamine 2000 and other well-known auxiliary lipids (DOPE, Chol) give lower surfection yields. The use of (DOTAP:PC)-based lipid vector also can be extended to several neural and non-neural cell lines with appreciable transfection yield such as a glial cell line (GCL) derived from rat spinal cord (65%), HeLa S3 (60%), COS-7 (30%) and HEK 293 cells (20%). The efficiency of DOTAP:PC (10:1) and Lipofectamine 2000 vectors in our surfection method are compared on standard HeLa S3 cell lines. Lipofectamine 2000 (72%) is slightly better than DOTAP:PC (10:1) (60%). However, the surfection method improved the efficiency of Lipofectamine 2000 itself (72%) as compared to the classical (62%) approach. In summary we have developed an original standard surfection protocol for both MN primary cultures and cell lines, thus simplifying laboratory practice; moreover, Lipofectamine 2000 used in this surfection method is more efficient for the cell lines than the manufacturer-recommended method. We emphasize that our method particularly spares fragile cells like MNs from injure and therefore, might be applied to other fragile cell type in primary cultures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.expneurol.2006.09.027 | DOI Listing |
Eur J Med Chem
January 2025
School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China. Electronic address:
Temozolomide, a widely used alkylating agent for glioblastoma treatment, faces significant challenges due to the development of resistance, which severely impacts patient survival. This underscores the urgent need for novel strategies to overcome this barrier. Focal adhesion kinase (FAK), an intracellular non-receptor tyrosine kinase, is highly expressed in glioblastoma cells and has been identified as a promising therapeutic target for anti-glioblastoma drug development.
View Article and Find Full Text PDFJ Food Sci
January 2025
College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China.
Ginseng and its processed products are valued as health foods for their nutritional benefits. The traditional forms of processed ginseng include white ginseng, dali ginseng (DLG), red ginseng (RG), and black ginseng (BG). However, the impact of processing on the chemical composition and anti-tumor efficacy of these products is not well understood.
View Article and Find Full Text PDFNeoplasma
December 2024
Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuchang, Wuhan, Hubei, China.
Many lines of evidence suggest that circular RNAs (circRNAs) are closely associated with the occurrence and progression of colon cancer. The objective of this study was to investigate the regulatory effects and mechanisms of circ_0075829 on ferroptosis and immune escape in colon cancer. We utilized colon cancer cell lines and a xenograft mouse model to analyze the function of circ_0075829 in vitro and in vivo.
View Article and Find Full Text PDFNeoplasma
December 2024
Department of General Surgery/Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
Esophageal squamous cell carcinoma (ESCC) has high mortality. The role and regulatory mechanism of hsa_circ_0021727 (circ_0021727) in ESCC remain largely unknown. This study focused on the undiscovered impact of circ_0021727 on cell cycle progression, apoptosis, and angiogenesis of ESCC.
View Article and Find Full Text PDFNeoplasma
December 2024
Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
MTHFD2 is highly overexpressed in breast cancer tissues, indicating that it might be used as a target in breast cancer treatment. This study aims to determine the role of MTHFD2 in breast cancer cell proliferation and the molecular pathways involved. In order to investigate MTHFD2 gene expression and its downstream pathways in breast cancer, we started our inquiry with a bioinformatics analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!