TRH has been found to be efficacious in treating certain neurodegenerative disorders such as epilepsy, Alzheimer's disease, neurotrauma and depression, however, its mechanism of action is poorly understood. Since glutamate (Glu) toxicity has been implicated in these disorders, we utilized primary enriched cultures of rat fetal (E 17) hippocampal neurons to test the hypothesis that an analog of TRH, 3-Methyl-Histidine TRH (3Me-H TRH), given concurrently with Glu would protect such neurons against cell damage and cell death. Cell viability was assessed via Trypan Blue exclusion cell counts, and neuronal damage was determined by assaying lactic acid dehydrogenase (LDH) released in the conditioned media. Fetal hippocampal neurons were cultured in neurobasal media for 7 days. On day 7, neurons (10(6)/well) were treated with: control media, 10 microM 3Me-H TRH, 500 microM Glu or 500 microM Glu with either 10, 1, 0.1, 0.01 or 0.001 microM 3Me-H TRH. Both media and neurons were harvested 16 h after treatment. Prolonged exposure to 10 microM 3Me-H TRH was not toxic to the cells, whereas neurons exposed to 500 microM Glu resulted in maximal cell death. Notably, 10, 1 and 0.1 microM 3Me-H TRH, when co-treated with 500 microM Glu, protected fetal neurons against cell death in a concentration-dependent manner. These results provide support for an important neuroprotective effect of TRH/analogs against glutamate toxicity in primary hippocampal neuronal culture and implicate a potentially beneficial role of TRH/analogs in neurodegenerative diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2645863 | PMC |
http://dx.doi.org/10.1016/j.brainres.2006.10.047 | DOI Listing |
Epilepsia
December 2007
Program in Medical Neurobiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
Purpose: Thyrotropin-releasing hormone (TRH) is known to have anticonvulsant effects in several animal seizure models and is efficacious in treating patients with certain intractable epilepsies. However, the duration of TRH's action is limited due to low bioavailability and difficulty penetrating the blood-brain barrier (BBB). Since direct nose to brain delivery of therapeutic compounds may provide a means for overcoming these barriers, we utilized the kindling model of temporal lobe epilepsy to determine if intranasal administration of a TRH analog, 3-methyl-histidine TRH (3Me-H TRH), could significantly inhibit various seizure parameters.
View Article and Find Full Text PDFBrain Res
January 2007
Program in Medical Neurobiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
TRH has been found to be efficacious in treating certain neurodegenerative disorders such as epilepsy, Alzheimer's disease, neurotrauma and depression, however, its mechanism of action is poorly understood. Since glutamate (Glu) toxicity has been implicated in these disorders, we utilized primary enriched cultures of rat fetal (E 17) hippocampal neurons to test the hypothesis that an analog of TRH, 3-Methyl-Histidine TRH (3Me-H TRH), given concurrently with Glu would protect such neurons against cell damage and cell death. Cell viability was assessed via Trypan Blue exclusion cell counts, and neuronal damage was determined by assaying lactic acid dehydrogenase (LDH) released in the conditioned media.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!