Loss of calcium and increased apoptosis within the same neuron.

Brain Res

Departmentt of Neurobiology and Anatomy, Wake Forest University Medical School, Medical Center Boulevard, Winston-Salem, NC 27157-1010, USA.

Published: January 2007

AI Article Synopsis

  • The study investigates the relationship between neuronal calcium levels and apoptosis, highlighting that reduced calcium levels might lead to increased cell death (apoptosis).
  • By using calcium chelator BAPTA on primary cortical neurons, researchers observed a strong correlation between decreased calcium levels and activation of caspase-3, an indicator of apoptosis.
  • The findings suggest that the capacity of developing neurons to manage calcium levels is essential for their long-term survival, as regions with high calcium buffering showed less apoptosis compared to those with lower buffering ability.

Article Abstract

Loss of neuronal calcium is associated with later apoptotic injury but observing reduced calcium and increased apoptosis in the same cell would provide more definitive proof of this apparent correlation. Thus, following exposure to vehicle or the calcium chelator, BAPTA (1-20 microM), primary cortical neurons were labeled with Calcium Green-1 which was then cross-linked with EDAC, prior to immuno-staining for various proteins. We found that BAPTA-induced changes in calcium were highly correlated with changes in expression of activated caspase-3 as well as the calcium binding proteins calbindin, calretinin, and parvalbumin. Additionally, in brain slices from P7 neonatal rats, BAPTA induced significant loss of calcium in a brain region we have previously shown to express only moderate levels of calcium binding proteins as well as display robust apoptosis following calcium entry blockade. In contrast, BAPTA had little influence on calcium levels in a brain region we have previously shown to express robust calcium binding proteins as well as display far less apoptosis following calcium entry blockade. These data suggest that the ability of developing neurons to buffer changes in calcium may be critical to their long-term survival.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1876679PMC
http://dx.doi.org/10.1016/j.brainres.2006.10.039DOI Listing

Publication Analysis

Top Keywords

calcium
13
calcium binding
12
binding proteins
12
loss calcium
8
calcium increased
8
increased apoptosis
8
changes calcium
8
brain region
8
region express
8
proteins well
8

Similar Publications

The L-type Ca channel (Ca1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca flux that drives Ca-induced-Ca-release, Ca1.

View Article and Find Full Text PDF

Carbonate fluorapatite coatings on phillipsite represent a significant sink of phosphorus in abyssal plains of the western Pacific Ocean.

Proc Natl Acad Sci U S A

February 2025

Department of Earth System Sciences, Center for Earth System Research and Sustainability, University of Hamburg, Hamburg 20146, Germany.

As an essential micronutrient, phosphorus plays a key role in oceanic biogeochemistry, with its cycling intimately connected to the global carbon cycle and climate change. Authigenic carbonate fluorapatite (CFA) has been suggested to represent a significant phosphorus sink in the deep ocean, but its formation mechanisms in oceanic low-productivity settings remain poorly constrained. Applying X-ray absorption near edge structure, transmission electron microscopy, and laser ablation inductively coupled plasma mass spectrometer analyses, we report a unique mineral assemblage where CFA crystals coat phillipsite in abyssal sediments of the East Mariana Basin and the Philippine Sea.

View Article and Find Full Text PDF

This study introduces a novel landfill cover material, employing lake sediment as a substrate, stabilised with fly ash, slag, desulfurisation gypsum and construction waste. The mechanical properties, including shear strength parameters, unconfined compressive strength, hydraulic conductivity, volumetric shrinkage, and water content, of the solidified sludge were evaluated. The microscopic mechanism of the solidified sludge were investigated through XRD, FTIR, and SEM-EDS techniques.

View Article and Find Full Text PDF

Somatostatin-expressing neurons in the medial prefrontal cortex promote sevoflurane anesthesia in mice.

Anesthesiology

January 2025

Key Laboratory of Brain Science, Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, 563100, Guizhou Province, China.

Background: The medial prefrontal cortex plays a crucial role in regulating consciousness. However, the specific functions of its excitatory and inhibitory networks during anesthesia remain uncertain. Here we explored the hypothesis that somatostatin interneurons in the medial prefrontal cortex enhance the effects of sevoflurane anesthesia by increasing GABA transmission to pyramidal neurons.

View Article and Find Full Text PDF

This study combines experimental techniques and mathematical modeling to investigate the dynamics of C. elegans body-wall muscle cells. Specifically, by conducting voltage clamp and mutant experiments, we identify key ion channels, particularly the L-type voltage-gated calcium channel (EGL-19) and potassium channels (SHK-1, SLO-2), which are crucial for generating action potentials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!