The N(1)-acetylation of spermidine or spermine by spermidine/spermine N(1)-acetyltransferase (SSAT) is the ratecontrolling enzymatic step in the polyamine catabolism. We have now generated SSAT knockout (SSAT-KO) mice, which confirmed our earlier results with SSATdeficient embryonic stem (ES) cells showing only slightly affected polyamine homeostasis, mainly manifested as an elevated molar ratio of spermidine to spermine in most tissues indicating the indispensability of SSAT for the spermidine backconversion. Contrary to SSAT deficient ES cells, polyamine pools in SSAT-KO mice remained almost unchanged in response to N(1),N(11)-diethylnorspermine (DENSPM) treatment compared to a significant reduction of the polyamine pools in the wild-type animals and ES cells. Furthermore, SSATKO mice were more sensitive to the toxicity exerted by DENSPM in comparison with wild-type mice. The latter finding indicates that inducible SSAT plays an essential role in vivo in DENSPM treatmentevoked polyamine depletion, but a controversial role in toxicity of DENSPM. Surprisingly, liver polyamine pools were depleted similarly in wild-type and SSAT-KO mice in response to carbon tetrachloride treatment. Further characterization of SSAT knockout mice revealed insulin resistance at old age which supported the role of polyamine catabolism in glucose metabolism detected earlier with our SSAT overexpressing mice displaying enhanced basal metabolic rate, high insulin sensitivity and improved glucose tolerance. Therefore SSAT knockout mice might serve as a novel mouse model for type 2 diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1582-4934.2006.tb00536.xDOI Listing

Publication Analysis

Top Keywords

ssat knockout
12
ssat-ko mice
12
polyamine pools
12
mice
9
spermidine/spermine n1-acetyltransferase
8
polyamine
8
polyamine homeostasis
8
insulin resistance
8
spermidine spermine
8
ssat
8

Similar Publications

Spermidine/spermine-N-acetyltransferase ablation impacts tauopathy-induced polyamine stress response.

Alzheimers Res Ther

June 2019

Byrd Alzheimer's Institute, Department of Pharmaceutical Sciences, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL, 33613, USA.

Background: Tau stabilizes microtubules; however, in Alzheimer's disease (AD) and tauopathies, tau becomes hyperphosphorylated, aggregates, and results in neuronal death. Our group recently uncovered a unique interaction between polyamine metabolism and tau fate. Polyamines exert an array of physiological effects that support neuronal function and cognitive processing.

View Article and Find Full Text PDF

Cisplatin-induced nephrotoxicity limits its use in many cancer patients. The expression of enzymes involved in polyamine catabolism, spermidine/spermine N1-acetyltransferase (SSAT) and spermine oxidase (SMOX) increase in the kidneys of mice treated with cisplatin. We hypothesized that enhanced polyamine catabolism contributes to tissue damage in cisplatin acute kidney injury (AKI).

View Article and Find Full Text PDF

Proximal tubule epithelial cell specific ablation of the spermidine/spermine N1-acetyltransferase gene reduces the severity of renal ischemia/reperfusion injury.

PLoS One

July 2015

Division of Nephrology and Hypertension, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America; Veterans Affair Medical Center, Cincinnati, Ohio, United States of America.

Background: Expression and activity of spermidine/spermine N1-acetyltransferase (SSAT) increases in kidneys subjected to ischemia/reperfusion (I/R) injury, while its ablation reduces the severity of such injuries. These results suggest that increased SSAT levels contribute to organ injury; however, the role of SSAT specifically expressed in proximal tubule epithelial cells, which are the primary targets of I/R injury, in the mediation of renal damage remains unresolved.

Methods: Severity of I/R injury in wt and renal proximal tubule specific SSAT-ko mice (PT-SSAT-Cko) subjected to bilateral renal I/R injury was assessed using cellular and molecular biological approaches.

View Article and Find Full Text PDF

Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity.

Nature

April 2014

Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts 02215, USA.

In obesity and type 2 diabetes, Glut4 glucose transporter expression is decreased selectively in adipocytes. Adipose-specific knockout or overexpression of Glut4 alters systemic insulin sensitivity. Here we show, using DNA array analyses, that nicotinamide N-methyltransferase (Nnmt) is the most strongly reciprocally regulated gene when comparing gene expression in white adipose tissue (WAT) from adipose-specific Glut4-knockout or adipose-specific Glut4-overexpressing mice with their respective controls.

View Article and Find Full Text PDF

The continued rise in obesity despite public education, awareness and policies indicates the need for mechanism-based therapeutic approaches to help control the disease. Our data, in conjunction with other studies, suggest an unexpected role for the polyamine catabolic enzyme spermidine/spermine-N1-acetyltransferase (SSAT) in fat homeostasis. Our previous studies showed that deletion of SSAT greatly exaggerates weight gain and that the transgenic overexpression suppresses weight gain in mice on a high-fat diet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!