A fluctuation theory analysis of the salting-out effect.

J Phys Chem B

Institute of Theoretical Science and Department of Chemistry, University of Oregon, Eugene, Oregon 97403, USA.

Published: November 2006

An analysis of the salting-out, or Sechenow, effect is given in terms of Kirkwood-Buff, or fluctuation, integrals. The analysis is formally exact but cannot easily be applied in its original form. When the solute that is being salted out is sparingly soluble, simplifications arise and the theory can be used to compute one of the Kirkwood-Buff integrals which is otherwise difficult to obtain.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp0656936DOI Listing

Publication Analysis

Top Keywords

analysis salting-out
8
fluctuation theory
4
theory analysis
4
salting-out analysis
4
salting-out sechenow
4
sechenow terms
4
terms kirkwood-buff
4
kirkwood-buff fluctuation
4
fluctuation integrals
4
integrals analysis
4

Similar Publications

Non-ionic surfactant self-assembly in calcium nitrate tetrahydrate and related salts.

Soft Matter

January 2025

School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia.

Self-assembly of amphiphilic molecules can take place in extremely concentrated salt solutions, such as inorganic molten salt hydrates or hydrous melts. The intermolecular interactions governing the organization of amphiphilic molecules under such extreme conditions are not yet fully understood. In this study, we investigated the specific effects of ions on the self-assembly of the non-ionic surfactant CH(OCHCH)OH (CE) under extreme salt concentrations, using calcium nitrate tetrahydrate as a reference.

View Article and Find Full Text PDF

Dipeptidyl peptidase IV (DPP-IV) is an important target enzyme for the treatment of type 2 diabetes mellitus (T2DM). Increasing researchers try to screen DPP-IV inhibitory peptides while the cost of DPP-IV is high. In this study, PkDPP-IV was efficiently purified by acid precipitation, ammonium sulfate salting out and gel filtration chromatography with a purification of 283.

View Article and Find Full Text PDF

A new analytical method was developed for the determination of 14 multiclass emerging organic contaminants in surface waters using LC-MS, and Dispersive Liquid-Liquid Microextraction (DLLME) for extraction. Different Natural Deep Eutectic Solvents (NADESs) composed of terpenes and organic acids were tested as extraction solvents and characterized by Fourier Transform Infrared Spectroscopy (FTIR), Hydrogen Nuclear Magnetic Resonance Spectroscopy (H-NMR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), density, and viscosity, eliminating the need to use traditional chlorinated solvents. NADES produced with butyric acid and thymol showed the best results and was selected for application for the first time in the extraction of emerging organic contaminants of different classes in water samples.

View Article and Find Full Text PDF

Ketamine HCl, an FDA-approved therapeutic, is administered through various routes, including intranasal delivery. Administering an adequate therapeutic dose of intranasal ketamine HCl is challenging due to the limited volume that can be delivered intranasally given the current commercially available concentrations. This study investigates solubilizing strategies to enhance the aqueous solubility of ketamine HCl for intranasal administration.

View Article and Find Full Text PDF

A method was developed for determining five organochlorine unstable pesticides (captan, chlorothalonil, dichlofluanid, folpet, and tolylfluanid) in agricultural products using GC-MS/MS. To prevent pesticide degradation, the food sample was maintained at -20℃ until the initiation of the extraction process. The sample underwent homogenization with acetonitrile and salting out using anhydrous magnesium sulfate and sodium chloride in the presence of citrate salts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!