A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Photoluminescence spectral change in layered titanate oxide intercalated with hydrated Eu3+. | LitMetric

Photoluminescence spectral change in layered titanate oxide intercalated with hydrated Eu3+.

J Phys Chem B

Department of Nano Science and Technology, Graduate School of Science and Technology, Kumamoto University, Kurokami 2-39-1, Kumamoto 860-8555, Japan.

Published: November 2006

A number of interesting photoluminescence properties of titanate layered oxide intercalated with hydrated Eu3+ have been demonstrated. Photoluminescence intensity of Eu3+ decreased rapidly with time during irradiation by UV light having energy higher than the band gap energy of the host TiO (Ti(1.81)O4) layer. This is presumably due to the decrease in energy transfer from the host TiO layer to Eu3+ as a result of the change in the hydration state of water molecules surrounding Eu3+, which is caused by the hole produced in the TiO valence band. When irradiation was discontinued, the emission intensity gradually recovered. The recovery time increased when the water in the interlayer is removed by heat treatment. This indicates that the state of interlayer water changes during irradiation and returns to its initial state after discontinuation of irradiation. The excitation spectra changed drastically at any given wavelength upon irradiation with UV light. A comparison of the excitation spectra before and after irradiation reveals that only the excitation peak at around the irradiation wavelength decreased upon irradiation, as in the case of spectral hole burning. The hydration state of water molecules surrounding Eu3+ presumably changes depending on the irradiation wavelength, leading to the above spectral change because the Eu/TiO film has a superlattice structure producing holes with different energies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp063412oDOI Listing

Publication Analysis

Top Keywords

irradiation
9
spectral change
8
oxide intercalated
8
intercalated hydrated
8
hydrated eu3+
8
irradiation light
8
host tio
8
hydration state
8
state water
8
water molecules
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!