By EPR spectroscopy, we have developed a new method for determining the molecular orientation in a surface-stabilized liquid crystal (LC) cell, which includes a paramagnetic LC, (2S,5S)-2,5-dimethyl-2-heptyloxyphenyl-5-[4-(4-octyloxybenzenecarbonyloxy)phenyl]pyrrolidine-1-oxy (1), whose spin source is fixed in the rigid core. For each phase of racemic [(+/-)] and enantiomerically enriched [(S,S)] 1 in a surface-stabilized LC cell (4 microm thickness), the observed g-value profiles depending on the angle between the applied magnetic field and the cell plane were successfully simulated by the orientation models: (i) the LC molecule in the nematic (N) phase of (+/-)-1 freely rotates around the long axis, which is always parallel to the rubbing direction; (ii) the long axis of the freely rotating LC molecule in the chiral nematic (N*) phase of (S,S)-1 is always parallel to the cell plane but rotates in the plane to form a helical superstructure; and (iii) in the crystalline phase of (S,S)-1, the molecular long axis forms a helical superstructure similar to that of the N* phase, but the molecule is fixed around the long axis so that the NO bond lies in the cell plane. Fitting the temperature profile of the g-value in the N phase of (+/-)-1 by use of the Haller equation, we determined the molecular g-values along the molecular long axis (g(parallelM)) and short axis (g(perpendicularM)), which were successfully reproduced by the use of the set of principal g-values of a similar nitroxide with consideration of the structure of the LC molecule optimized by Molecular Mechanics 3 (MM3).

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp063836iDOI Listing

Publication Analysis

Top Keywords

long axis
20
cell plane
12
molecular orientation
8
orientation surface-stabilized
8
liquid crystal
8
crystal cell
8
nematic phase
8
phase +/--1
8
phase ss-1
8
helical superstructure
8

Similar Publications

Specialization of the human hippocampal long axis revisited.

Proc Natl Acad Sci U S A

January 2025

Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138.

The hippocampus possesses anatomical differences along its long axis. Here, we explored the functional specialization of the human hippocampal long axis using network-anchored precision functional MRI in two independent datasets (N = 11 and N = 9) paired with behavioral analysis (N = 266 and N = 238). Functional connectivity analyses demonstrated that the anterior hippocampus was preferentially correlated with a cerebral network associated with remembering, while the posterior hippocampus selectively contained a region correlated with a distinct network associated with behavioral salience.

View Article and Find Full Text PDF

Background: Granulosa cell proliferation and survival are essential for normal ovarian function and follicular development. Long non-coding RNAs (lncRNAs) have emerged as important regulators of cell proliferation and differentiation. Nuclear paraspeckle assembly transcript 1 (NEAT1) has been implicated in various cellular processes, but its role in granulosa cell function remains unclear.

View Article and Find Full Text PDF

Background: A lumbosacral transitional vertebra (LTV) is a congenital anomaly of the caudal vertebral column. It has been associated with asymmetrical canine hip dysplasia (CHD) and cauda equina syndrome (CES) in German Shepherd dogs. This retrospective cross-sectional study aims to report the potential influence of asymmetric LTV on pelvic anatomy using ventrodorsal (VD) radiographs.

View Article and Find Full Text PDF

Background: LncRNA PCAT-1 is known to promote cancer proliferation, invasion, and metastasis. However, its significance in HNSCC is not fully understood. This research investigates how the PCAT-1 / miR-145-5p / FSCN-1 axis promote HNSCC.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a major global health concern that accounts for more than 80% of all primary hepatic carcinomas. The long noncoding RNA FGD5 antisense RNA 1 (FGD5-AS1) has been linked to HCC cell stemness and proliferation. However, the exact function of FGD5-AS1 in HCC remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!