The objective in this work is twofold: (i) to illustrate the use of the Mathematical Theory of Integrative Physiology (MTIP) [13], that is a general theory and practical method for the systematic and progressive mathematical integration of physiological mechanisms; (ii) to study a complex neurobiological system taken as an example, i.e., the synaptic plasticity depending on brain activity, on astrocytic and neuronal metabolism, and on brain hemodynamics. The functional organization of the nervous tissue is presented in the framework of the MTIP, the ultimate objective being the study of learning and memory by coupling the three networks of neurons, astrocytes and capillaries. Specifically in this paper, we study the influence of the variation of capillaries arterial oxygen on the induction of LTP/LTD by coupling validated mathematical models of AMPA, NMDA, VDCC channels, calcium current in the dendritic spine, vesicular glutamate dynamics in the presynaptic bouton derived from glycolysis and neuronal glucose, mitochondrial respiration, Ca/Na pumps, glycolysis, and calcium dynamics in the astrocytes, hemodynamics of the capillaries. The integration of all these models is discussed by claiming the advantages of using a common framework and a specific dedicated computing system, PhysioMatica.

Download full-text PDF

Source
http://dx.doi.org/10.1142/s0219635206001252DOI Listing

Publication Analysis

Top Keywords

integration physiological
8
physiological mechanisms
8
nervous tissue
8
synaptic plasticity
8
plasticity depending
8
mechanisms nervous
4
tissue mtip
4
mtip synaptic
4
depending neurons-astrocytes-capillaries
4
neurons-astrocytes-capillaries interactions
4

Similar Publications

Integrated transcriptomics and metabolomics analyses provide new insights into cassava in response to nitrogen deficiency.

Front Plant Sci

January 2025

National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China.

Nitrogen deficiency is a key constraint on crop yield. Cassava, the world's sixth-largest food crop and a crucial source of feed and industrial materials, can thrive in marginal soils, yet its yield is still significantly affected by limited nitrogen availability. Investigating cassava's response mechanisms to nitrogen scarcity is therefore essential for advancing molecular breeding and identifying nitrogen-efficient varieties.

View Article and Find Full Text PDF

A biomass-derived multifunctional conductive coating with outstanding electromagnetic shielding and photothermal conversion properties for integrated wearable intelligent textiles and skin bioelectronics.

Mater Horiz

January 2025

Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.

Intelligent electronic textiles have important application value in the field of wearable electronics due to their unique structure, flexibility, and breathability. However, the currently reported electronic textiles are still challenged by issues such as their biocompatibility, photothermal conversion, and electromagnetic wave contamination. Herein, a multifunctional biomass-based conductive coating was developed using natural carboxymethyl starch (CMS), dopamine and polypyrrole (PPy) and then further employed for constructing multifunctional intelligent electronic textiles.

View Article and Find Full Text PDF

Leveraging Model Master Files for Long-Acting Injectables.

Pharm Res

January 2025

Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, , MD, 20993, USA.

The U.S. Food and Drug Administration (FDA) and the Center for Research on Complex Generics (CRCG) hosted a public workshop on May 2-3, 2024, titled "Considerations and Potential Regulatory Applications for a Model Master File (Lachaine et al Can J Psychiatry.

View Article and Find Full Text PDF

Aims/hypothesis: Within the small intestine, neutrophils play an integral role in preventing bacterial infection. Upon interaction with bacteria or bacteria-derived antigens, neutrophils initiate a multi-staged response of which the terminal stage is NETosis, formation of protease-decorated nuclear DNA into extracellular traps. NETosis has a great propensity to elicit ocular damage and has been associated with diabetic retinopathy and diabetic macular oedema (DME) progression.

View Article and Find Full Text PDF

Can spatial self-organization inhibit evolutionary adaptation?

J R Soc Interface

January 2025

The Swiss Institute for Dryland Environmental and Energy Research, BIDR, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel.

Plants often respond to drier climates by slow evolutionary adaptations from fast-growing to stress-tolerant species. These evolutionary adaptations increase the plants' resilience to droughts but involve productivity losses that bear on agriculture and food security. Plants also respond by spatial self-organization, through fast vegetation patterning involving differential plant mortality and increased water availability to the surviving plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!