Flow rate limitation in open capillary channel flows.

Ann N Y Acad Sci

ZARM-Center of Applied Space Technology and Microgravity, University of Bremen, Bremen, Germany.

Published: September 2006

This paper reports the experimental and theoretical investigations of forced liquid flows through open capillary channels under reduced gravity conditions. An open capillary channel is a structure that establishes a liquid flow path at low Bond numbers, when the capillary pressure caused by the surface tension force dominates in comparison to the hydrostatic pressure induced by gravitational or residual accelerations. In case of steady flow through the channel, the capillary pressure of the free surface balances the pressure difference between the liquid and the surrounding constant-pressure gas phase. Because of convective and viscous momentum transport, the pressure along the flow path decreases and causes the free surface to bend inward. The maximum flow rate is achieved when the free surface collapses and gas ingestion occurs at the outlet. This critical flow rate depends on the geometry of the channel and the properties of the liquid. In this paper we present a comparison of the theoretical and experimental critical flow rates and surface profiles for convective dominated flows. For the prediction of the critical flow rate a one-dimensional theoretical model taking into account the entrance pressure loss and the frictional pressure loss in the channel is developed.

Download full-text PDF

Source
http://dx.doi.org/10.1196/annals.1362.031DOI Listing

Publication Analysis

Top Keywords

flow rate
16
open capillary
12
free surface
12
critical flow
12
flow
8
capillary channel
8
flow path
8
capillary pressure
8
pressure loss
8
pressure
7

Similar Publications

Introduction: During hemodialysis (HD), the presence of clots in the dialyzer can diminish the effective surface area of the device. In severe cases, clot formation in the circuit can halt treatment and lead to blood loss in the system. Thus, ensuring proper anticoagulation during HD is crucial to prevent clotting in the circuit while safeguarding the patient from bleeding risks.

View Article and Find Full Text PDF

Background: The stent-assisted coiling (SAC) and flow-diverter stent (FDS) techniques are widely used in the endovascular treatment of paraclinoid aneurysms. This article compares the occlusion rate, periprocedural complications, and clinical outcomes of SAC and FDSs.

Methods: Between January 2010 and December 2020, a systematic search of electronic databases identified 2283 articles for screening.

View Article and Find Full Text PDF

The role of autophagy related 12 (ATG12) in the progression of hepatocellular carcinoma and its prognostic value.

Discov Oncol

December 2024

Department of Hospital Infection Management, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, 201700, China.

The aim of our research was to explore the character of autophagy related 12 (ATG12) in the development of hepatocellular carcinoma (HCC). A total of  145 HCC tissues as well as paired adjacent normal tissues were collected, then immunohistochemistry was conducted to access the expression of ATG12. HCC cells were transfected with pcDNA ATG12 or si-ATG12 to overexpress ATG12 or downregulate ATG12.

View Article and Find Full Text PDF

Objective: In recent years, the application of robotic assistance in diagnostic and therapeutic endovascular neurointerventional procedures has gained notable attention. In this systematic review and meta-analysis, we aim to evaluate the feasibility, safety, and current indications of robotic-assisted neurointerventions and to assess the degree of robotic assistance and reasons for unplanned manual conversion from robotic assistance.

Methods: We searched Medline, Scopus, Web of Science, and Cochrane Library databases following PRISMA guidelines and included studies with ≥ 4 patients reporting on robotic-assisted neurointerventions.

View Article and Find Full Text PDF

There is scant information available about the blood flow of the pulmonary artery in avian cardiology. In human medicine, the shape of the Doppler sonographic blood flow profile of the pulmonary artery can be used to access the pressure conditions of the right heart. With this background, this study focused on the examination of the acceleration and deceleration phase of the pulsed-wave Doppler flow profile of the pulmonary artery of healthy racing pigeons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!