BCP crystals increase prostacyclin production and upregulate the prostacyclin receptor in OA synovial fibroblasts: potential effects on mPGES1 and MMP-13.

Osteoarthritis Cartilage

Department of Molecular and Cellular Therapeutics, Royal College of Surgeons of Ireland, and National Orthopaedic Hospital, Dublin, Ireland.

Published: April 2007

Objective: To investigate the potential involvement of prostacyclin in basic calcium phosphate (BCP) crystal-induced responses in osteoarthritic synovial fibroblasts (OASF).

Methods: OASF grown in culture were stimulated with BCP crystals. Prostacyclin production was measured by enzyme immunoassay. Expression of messenger RNA (mRNA) transcripts was assessed by real-time polymerase chain reaction (PCR). Expression of prostacyclin synthase (PGIS) and the prostacyclin (IP) receptor was measured. The effects of iloprost, a prostacyclin analogue, on expression of genes implicated in osteoarthritis such as microsomal prostaglandin E2 synthase 1 (mPGES1) and matrix metalloproteinases (MMPs) were also studied. FPT inhibitor II, a farnesyl transferase inhibitor, was used to antagonize iloprost-induced responses.

Results: BCP crystal stimulation led to a five-fold increase in prostacyclin production in OASF compared to untreated cells. This induction was attenuated by cyclooxygenase (COX)-2 and COX-1 inhibition at 4 and 32h, respectively. PGIS and IP receptor transcripts were constitutively expressed in OASF. BCP crystals upregulated IP receptor expression two-fold. While iloprost diminished BCP crystal-stimulated IP receptor upregulation, the inhibitory effect of iloprost was blocked by the farnesyl transferase inhibitor. In addition, iloprost upregulated mPGES1 and downregulated MMP-13 expression in BCP crystal-stimulated OASF, effects that were not influenced by the farnesyl transferase inhibitor.

Conclusions: These data showed for the first time that BCP crystals can increase prostacyclin production and upregulate expression of the IP receptor in OASF. The potential of prostacyclin to influence BCP crystal-stimulated responses was supported by the effects of iloprost on the expression of the IP receptor, mPGES1 and MMP-13. These data demonstrate the potential involvement of prostacyclin in BCP crystal-associated osteoarthritis (OA) and suggest that inhibition of PG synthesis with non-steroidal anti-inflammatory drugs may have both deleterious and beneficial effects in BCP crystal-associated OA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.joca.2006.10.003DOI Listing

Publication Analysis

Top Keywords

bcp crystals
16
prostacyclin production
16
increase prostacyclin
12
farnesyl transferase
12
bcp crystal-stimulated
12
bcp
11
prostacyclin
11
crystals increase
8
production upregulate
8
prostacyclin receptor
8

Similar Publications

Nanoplatform for synergistic therapy constructed via the co-assembly of a reduction-responsive cholesterol-based block copolymer and a photothermal amphiphile.

Mater Today Bio

December 2024

Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China.

The goal of combination cancer therapy, including chemo-phototherapy, is to achieve highly efficient antitumor effects while minimizing the adverse reactions associated with conventional chemotherapy. Nevertheless, enhancing the contribution of non-chemotherapeutic strategies in combination therapy is often challenging because this requires multiple active ingredients to be encapsulated in a single delivery system. However, most commonly used photothermal reagents are challenging to be loaded in large quantities and have poor biocompatibility.

View Article and Find Full Text PDF

Soft optical materials based on the integration of perovskite nanostructures and block copolymers.

Chem Commun (Camb)

December 2024

School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.

Metal halide perovskites and their nanostructures have efficient optical absorption and emission in the visible range with high external quantum efficiency. They have been at the forefront of next-generation photovoltaics and optoelectronics applications. But several intrinsic limitations of perovskites including low stability and incompatibility with lithography-based patterning constrains their broader applications.

View Article and Find Full Text PDF

Neuro-Actuating Photonic Skin Enabled by Ion-Gel Transistor with Thermo-Adaptive Block Copolymer.

Adv Mater

December 2024

Department of Material Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.

Despite significant progress in developing artificial synapses to emulate the human nervous system for bio-signal transmission, synapses with thermo-adaptive coloration and soft actuators driven by temperature change have seldom been reported. Herein, a photonic neuro-actuating synaptic skin is presented enabling thermoresponsive synaptic signal transmission, color variation, and actuation. First, a thermoresponsive display synapse is developed based on a 3-terminal ion-gel transistor with a poly (3,4-ethylene dioxythiophene):poly (styrene sulfonate) (PEDOT:PSS) semiconducting channel mixed with 2D titanium carbide (TiCT) MXene and a thermo-adaptive 1D block copolymer (BCP) photonic crystal (PC) gate insulator.

View Article and Find Full Text PDF

Amphiphilic block copolymer (a-BCP) micelles offer morphological diversity and dimensional tunability, making them suitable for the fabrication of perovskite nanocrystals. However, precise control over the nucleation and growth of perovskite nanocrystals using a-BCP colloidal templates remains underexplored. This study investigates the effects of toluene, methanol, and polystyrene--poly(2-vinylpyridine) (PS--P2VP) on the formation of cesium lead bromide (CsPbBr) nanocrystals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!