Glutathione (GSH) is synthesized by gamma-glutamylcysteine synthetase (gamma-GCS) and glutathione synthetase (GS) in living organisms. Recently, bifunctional fusion protein, termed gamma-GCS-GS catalyzing both gamma-GCS and GS reactions from gram-positive firmicutes Streptococcus agalactiae, has been reported. We revealed that in the gamma-GCS activity, S. agalactiae gamma-GCS-GS had different substrate specificities from those of Escherichia coli gamma-GCS. Furthermore, S. agalactiae gamma-GCS-GS synthesized several kinds of gamma-glutamyltripeptide, gamma-Glu-X(aa)-Gly, from free three amino acids. In Clostridium acetobutylicum, the genes encoding gamma-GCS and putative GS were found to be immediately adjacent by BLAST search, and had amino acid sequence homology with S. agalactiae gamma-GCS-GS, respectively. We confirmed that the proteins expressed from each gene showed gamma-GCS and GS activity, respectively. C. acetobutylicum GS had broad substrate specificities and synthesized several kinds of gamma-glutamyltripeptide, gamma-Glu-Cys-X(aa). Whereas the substrate specificities of gamma-GCS domain protein and GS domain protein of S. agalactiae gamma-GCS-GS were the same as those of S. agalactiae gamma-GCS-GS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2006.11.016 | DOI Listing |
Biochem Biophys Res Commun
January 2007
Department of Applied Chemistry, School of Science and Engineering, Waseda University, Ohkubo 3-4-1, Tokyo 169-8555, Japan.
Glutathione (GSH) is synthesized by gamma-glutamylcysteine synthetase (gamma-GCS) and glutathione synthetase (GS) in living organisms. Recently, bifunctional fusion protein, termed gamma-GCS-GS catalyzing both gamma-GCS and GS reactions from gram-positive firmicutes Streptococcus agalactiae, has been reported. We revealed that in the gamma-GCS activity, S.
View Article and Find Full Text PDFBiochemistry
September 2006
Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
In most organisms, glutathione (GSH) is synthesized by the sequential action of distinct enzymes, gamma-glutamylcysteine synthetase (gamma-GCS) and GSH synthetase (GS). In Streptococcus agalactiae, GSH synthesis is catalyzed by a single enzyme, gamma-glutamylcysteine synthetase-glutathione synthetase (gamma-GCS-GS). The N-terminal sequence of gamma-GCS-GS is similar to Escherichia coli gamma-GCS, but the C-terminal sequence is an ATP-grasp domain more similar to d-Ala, d-Ala ligase than to any known GS.
View Article and Find Full Text PDFJ Biol Chem
March 2005
Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
Gamma-glutamylcysteine synthetase (gamma-GCS) and glutathione synthetase (GS), distinct enzymes that together account for glutathione (GSH) synthesis, have been isolated and characterized from several Gram-negative prokaryotes and from numerous eukaryotes including mammals, amphibians, plants, yeast, and protozoa. Glutathione synthesis is relatively uncommon among the Gram-positive bacteria, and, to date, neither the genes nor the proteins involved have been identified. In the present report, we show that crude extracts of Streptococcus agalactiae catalyze the gamma-GCS and GS reactions and can synthesize GSH from its constituent amino acids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!