In photosynthetic chains, the kinetics of fluorescence yield depends on the photochemical rates at the level of both Photosystem I and II and thus on the absorption cross section of the photosynthetic units as well as on the coupling between light harvesting complexes and photosynthetic traps. A new set-up is described which, at variance with the commonly used set-ups, uses of a weakly absorbed light source (light-emitting diodes with maximum output at 520 nm) to excite the photosynthetic electron chain and probe the resulting fluorescence yield changes and their time course. This approach optimizes the homogeneity of the exciting light throughout the leaf and we show that this homogeneity narrows the distribution of the photochemical rates. Although the exciting light is weakly absorbed, the possibility to tune the intensity of the light emitting diodes allows one to reach photochemical rates ranging from 10(4) s(-1) to 0.25 s(-1) rendering experimentally accessible different functional regimes. The variations of the fluorescence yield induced by the photosynthetic activity are qualitatively and quantitatively discussed. When illuminating dark-adapted leaves by a weak light, the kinetics of fluorescence changes displays a pronounced plateau which precedes the fluorescence increase reflecting the full reduction of the plastoquinone pool. We ascribe this plateau to the time delay needed to reduce the photosystem I electron acceptors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbabio.2006.10.002 | DOI Listing |
Anal Chem
January 2025
School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China.
PIWI-interacting RNAs (piRNAs) are a class of small noncoding RNAs associated with PIWI proteins within the male germline, and they play significant roles in maintaining genome stability via the modulation of gene expression. The piRNAs are implicated in the progression of various cancers, but the simultaneous monitoring of multiple piRNAs remains a challenge. Herein, we construct a single-molecule biosensor based on polymerization-transcription-mediated target regeneration for the simultaneous one-pot detection of multiple piRNAs.
View Article and Find Full Text PDFThe field of π-conjugated organic materials has seen significant advances in recent years. However, enhancing the functionality of well-established, mass-produced compounds remains a considerable challenge, despite being an intriguing strategy for designing high-value organic materials with low production costs. In this context, vat dyes, known for their wide range of colors and extensive use in the textile industry are particularly attractive.
View Article and Find Full Text PDFChem Sci
January 2025
Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 P. R. China
Developing highly efficient deep-blue multi-resonance thermal activated delayed fluorescence (MR-TADF) materials for ultra-high-definition organic light-emitting diodes (OLEDs) displays that meet the stringent BT.2020 standard remains a significant challenge. In this study, we present a strategy to achieve high-performance deep-blue MR-TADF emitters by integrating a large π-conjugated double-boron-embedded MR skeleton with strategically positioned peripheral steric hindrance groups.
View Article and Find Full Text PDFJ Biomed Opt
February 2025
University of Wisconsin-Madison, Department of Medical Physics, Madison, Wisconsin, United States.
Significance: Protoporphyrin IX (PpIX) delayed fluorescence (DF) is inversely related to the oxygen present in tissues and has potential as a novel biomarker for surgical guidance and real-time tissue metabolism assessment. Despite the unique promise of this technique, its successful clinical translation is limited by the low intensity emitted.
Aim: We developed a systematic study of ways to increase the PpIX DF signal through acquisition sampling changes, allowing optimized imaging at video rates.
Front Vet Sci
January 2025
Clinic for Reproduction and Large Animals-Section for Ruminants, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia.
Vitamin D is essential for cattle and can be synthesized in the skin under ultraviolet irradiation. This study investigated the effects of narrow-band UV-B irradiation during automatic milking on blood vitamin D concentration and the influence of hair and black skin areas on cutaneous vitamin D synthesis in Holstein Friesian cows. Fifty-one cows were stratified by milk yield, days after calving, and percentage of black skin, then divided into three groups: shaved and irradiated (80 J/m), unshaved and irradiated (129-305 J/m), and a control group.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!