A major challenge in microbial diagnostics is the parallel detection and identification of low-bundance pathogens within a complex microbial community. In addition, a high specificity providing robust, reliable identification at least at the species level is required. A microbial diagnostic microarray approach, using single nucleotide extension labeling with gyrB as the marker gene, was developed. We present a novel concept applying competitive oligonucleotide probes to improve the specificity of the assay. Our approach enabled the sensitive and specific detection of a broad range of pathogenic bacteria. The approach was tested with a set of 35 oligonucleotide probes targeting Escherichia coli, Shigella spp., Salmonella spp., Aeromonas hydrophila, Vibrio cholerae, Mycobacterium avium, Mycobacterium tuberculosis, Helicobacter pylori, Proteus mirabilis, Yersinia enterocolitica, and Campylobacter jejuni. The introduction of competitive oligonucleotides in the labeling reaction successfully suppressed cross-reaction by closely related sequences, significantly improving the performance of the assay. Environmental applicability was tested with environmental and veterinary samples harboring complex microbial communities. Detection sensitivity in the range of 0.1% has been demonstrated, far below the 5% detection limit of traditional microbial diagnostic microarrays.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ab.2006.09.026 | DOI Listing |
Sci Rep
January 2025
Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St, 02-786, Warsaw, Poland.
Streptococcus dysgalactiae (S. dysgalactiae ) is a common pathogen of humans and various animals. However, the phylogenetic position of animal S.
View Article and Find Full Text PDFSci Rep
January 2025
Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, 226007, India.
Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pre-clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Salaya, Thailand.
This study explores the effectiveness of various antifungal drugs in treating sporotrichosis caused by Sporothrix schenckii, especially in non-wild-type (non-WT) strains. The drugs tested include enilconazole (ENIL), isavuconazole (ISA), posaconazole (POS), terbinafine (TER), and itraconazole (ITC). The study involved in vitro and in vivo tests on 10 WT isolates and eight ITC non-WT isolates.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
Multidrug resistance in the pathogenic fungus Candida glabrata is a growing global threat. Here, we study mechanisms of multidrug resistance in this pathogen. Exposure of C.
View Article and Find Full Text PDFBest Pract Res Clin Rheumatol
January 2025
Department of Rheumatology and Immunology, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China; Division of Rheumatology, Department of Medicine, University of Colorado, No. 11, Xizhimen South Street, Xicheng District, Aurora, CO, 80045, USA. Electronic address:
Rheumatoid arthritis (RA) is a complex autoimmune disease with growing evidence implicating the microbiota as a critical contributor to its pathogenesis. This review explores the multifaceted roles of microbial dysbiosis in RA, emphasizing its impact on immune cell modulation, autoantibody production, gut barrier integrity, and joint inflammation. Animal models reveal how genetic predisposition and environmental factors interact with specific microbial taxa to influence disease susceptibility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!