Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Glass-ceramics featuring special properties can be used as a basis to develop biomaterials. It is generally differentiated between highly durable biomaterials for restorative dental applications and bioactive glass-ceramics for medical use, for example, bone replacements. In detail, this paper presents one biomaterial from each of these two groups of materials. In respect to the restorative dental biomaterials, the authors give an overview of the most important glass-ceramics for clinical applications. Leucite, leucite-apatite, lithium disilicate and apatite containing glass-ceramics represent biomaterials for these applications. In detail, the authors report on nucleation and crystallization mechanisms and properties of leucite-apatite glass-ceramics. The mechanism of apatite nucleation is characterized by a heterogeneous process. Primary crystal phases of alpha - and beta -NaCaPO4 were determined. Rhenanite glass-ceramics represent biomaterials with high surface reactivity in simulated body fluid, SBF, and exhibit reactive behaviour in tests with bone cells. Cell adhesion phenomena and cell growth were observed. Suitable colonization and proliferation and differentiation of cells as a preliminary stage in the development of a material for bone regeneration applications was established. The authors conclude that the processes of heterogeneous nucleation and crystallization are important for controlling the required reactions in both biomaterial groups.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10856-006-0441-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!