Increased intraglomerular pressure is an important hemodynamic determinant of glomerulosclerosis and can be modeled in vitro by exposing mesangial cells to cyclic mechanical strain. A previous study showed that RhoA mediates strain-induced production of fibronectin; herein is investigated the role of caveolae in RhoA activation. Cyclodextrin and filipin, agents that disrupt caveolae, abrogated strain-induced RhoA activation in mesangial cells. Caveolin-1 (cav-1), the defining protein of caveolae, was Y14 phosphorylated by strain, and this was inhibited by PP1, showing Src dependence. Strain also induced c-SrcY416 phosphorylation and hence activation. Strain increased RhoA association with cav-1, which was blocked by PP1. Cyclodextrin and filipin inhibited the strain-induced RhoA/cav-1 association, indicating dependence on caveolar structural integrity. Restoration of caveolae by coincubation of cyclodextrin with cholesterol rescued both RhoA activation and RhoA/cav-1 association in response to strain. Sucrose gradient detected a significant portion of RhoA in caveolae, with Src located exclusively in these domains. Finally, in cells that were infected with retrovirus that encodes the nonphosphorylatable cav-1 Y14A, RhoA/cav-1 association, RhoA activation, and fibronectin secretion in response to strain were abrogated. It is concluded that strain-induced RhoA activation depends on the integrity of caveolae and on physical association of cav-1 and RhoA. The phosphorylation of cav-1 at Y14 by Src kinases is required for this to occur. These studies define a novel function for cav-1 and caveolae as positive effectors of RhoA activation. Targeting caveolae thus may provide a new therapeutic option for glomerular sclerosis that is associated with elevated intraglomerular pressure.

Download full-text PDF

Source
http://dx.doi.org/10.1681/ASN.2006050498DOI Listing

Publication Analysis

Top Keywords

rhoa activation
28
mesangial cells
12
rhoa/cav-1 association
12
rhoa
11
caveolae
9
activation mesangial
8
mechanical strain
8
intraglomerular pressure
8
cyclodextrin filipin
8
strain-induced rhoa
8

Similar Publications

Wnt7a-Cre is a commonly used for generating uterine epithelial conditional knockout mice, such as epiERα-/- (Esr1f/-Wnt7aCre/+) and epiPR-/- (Pgrf/-Wnt7aCre/+). We noticed that epiERα-/- females, but not epiPR-/- females, have prolonged plugging latency, which is the duration between continuous cohabitation and detection of the first vaginal plug (a sign of mating). Mating occurs in proestrus and/or estrus stages of the estrous cycle.

View Article and Find Full Text PDF

Background: Rho GTPases are essential regulators for cellular movement and intracellular membrane trafficking. Their enzymatic activities fluctuate between active GTP-bound and inactive GDP-bound states regulated by GTPase activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs). Arhgap39/Vilse/Porf-2 is a newly identified GAP.

View Article and Find Full Text PDF

Protocadherin-7 (Pcdh7) is a member of the non-clustered protocadherin δ1 subgroup within the cadherin superfamily. Pcdh7 has been shown to control osteoclast differentiation via the protein phosphatase 2A (PP2A)-glycogen synthase kinase-3β (GSK3β)-small GTPase signaling axis. As protocadherins serve multiple biological functions, a deeper understanding of Pcdh7's biological features is valuable.

View Article and Find Full Text PDF

The Expression Regulation and Cancer-Promoting Roles of RACGAP1.

Biomolecules

December 2024

Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China.

RACGAP1 is a Rho-GTPase-activating protein originally discovered in male germ cells to inactivate Rac, RhoA and Cdc42 from the GTP-bound form to the GDP-bound form. GAP has traditionally been known as a tumor suppressor. However, studies increasingly suggest that overexpressed RACGAP1 activates Rac and RhoA in multiple cancers to mediate downstream oncogene overexpression by assisting in the nuclear translocation of signaling molecules and to promote cytokinesis by regulating the cytoskeleton or serving as a component of the central spindle.

View Article and Find Full Text PDF

Immunologic bile duct destruction is a pathogenic condition associated with vanishing bile duct syndrome (VBDS) after liver transplantation and hematopoietic stem-cell transplantation. As the bile acid receptor sphingosine 1-phosphate receptor 2 (S1PR2) plays a critical role in recruitment of bone marrow-derived monocytes/macrophages to sites of cholestatic liver injury, S1PR2 expression was examined using cultured macrophages and patient tissues. Bile canaliculi destruction precedes intrahepatic ductopenia; therefore, we focused on hepatocyte S1PR2 and the downstream RhoA/Rho kinase 1 (ROCK1) signaling pathway and bile canaliculi alterations using three-dimensional hepatocyte culture models that form obvious bile canaliculus-like networks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!