Irradiation has been widely reported to damage organisms by attacking on proteins, nucleic acid and lipids in cells. However, radiation hormesis after low-dose irradiation has become the focus of research in radiobiology in recent years. To investigate the effects of pre-exposure of mouse brain with low-dose (12)C6+ ion or 60Co gamma (gamma)-ray on male reproductive endocrine capacity induced by subsequent high-dose irradiation, the brains of the B6C3F1 hybrid strain male mice were irradiated with 0.05 Gy of (12)C6+ ion or 60Co gamma-ray as the pre-exposure dose, and were then irradiated with 2 Gy as challenging irradiation dose at 4 h after pre-exposure. Serum pituitary gonadotropin hormones, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), testosterone, testis weight, sperm count and shape were measured on the 35th day after irradiation. The results showed that there was a significant reduction in the levels of serum FSH, LH, testosterone, testis weight and sperm count, and a significant increase in sperm abnormalities by irradiation of the mouse brain with 2 Gy of (12)C6+ ion or 60Co gamma-ray. Moreover, the effects were more obvious in the group irradiated by (12)C6+ ion than in that irradiated by 60Co gamma-ray. Pre-exposure with low-dose (12)C6+ ion or 60Co gamma-ray significantly alleviated the harmful effects induced by a subsequent high-dose irradiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2605.2006.00698.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!