Circadian systems coordinate endogenous events with external signals. In mammals, hormone-clock feedbacks are a well-known integration system. Here, we investigated phytohormone effects on plant-circadian rhythms via the promoter:luciferase system. We report that many hormones control specific features of the plant-circadian system, and do so in distinct ways. In particular, cytokinins delay circadian phase, auxins regulate circadian amplitude and clock precision, and brassinosteroid and abscisic acid modulate circadian periodicity. We confirmed the pharmacology in hormone synthesis and perception mutants, as rhythmic expression is predictably altered in an array of hormone-related mutants. We genetically dissected one mechanism that integrates hormone signals into the clock, and showed that the hormone-activated ARABIDOPSIS RESPONSE REGULATOR 4 and the photoreceptor phytochrome B are elements in the input of the cytokinin signal to circadian phase. Furthermore, molecular-expression targets of this signal were found. Collectively, we found that plants have multiple input/output feedbacks, implying that many hormones can function on the circadian system to adjust the clock to external signals to properly maintain the clock system.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2443.2006.01026.xDOI Listing

Publication Analysis

Top Keywords

external signals
8
circadian phase
8
circadian
7
clock
5
system
5
multiple phytohormones
4
phytohormones influence
4
influence distinct
4
distinct parameters
4
parameters plant
4

Similar Publications

Purpose: Adaptive radiotherapy accounts for interfractional anatomic changes. We hypothesize that changes in the gross tumor volumes identified during daily scans could be analyzed using delta-radiomics to predict disease progression events. We evaluated whether an auxiliary data set could improve prediction performance.

View Article and Find Full Text PDF

Calcium (Ca)-dependent signalling plays a well-characterised role in the perception and response mechanisms to environmental stimuli in plant cells. In the context of a constantly changing environment, it is fundamental to understand how crop yield and microalgal biomass productivity are affected by external factors. Ca signalling is known to be important in different physiological processes in microalgae but many of these signal transduction pathways still need to be characterised.

View Article and Find Full Text PDF

Environmental changes, such as applied medication, nutrient depletion, and accumulation of metabolic residues, affect cell culture activity. The combination of these factors reflects on the local temperature distribution and local oxygen concentration towards the cell culture scaffold. However, determining the temporal variation of local temperature, independent of local oxygen concentration changes in biological specimens, remains a significant technological challenge.

View Article and Find Full Text PDF

: Owing to the progressive rise in saline waters globally, resulting in detrimental impacts on freshwater aquaculture, the underlying molecular distinctions governing the response to alkaline stress between diploid and triploid crucian carp remain unknown. : This investigation explores the effects of 20 and 60 mmol NaHCO stress over 30 days on the gills of diploid and triploid crucian carp, employing histological, biochemical, and multi-omic analyses. : Findings reveal structural damage to gill lamellas in the examined tissue.

View Article and Find Full Text PDF

Background: Macrophages play a dual role in the tumor microenvironment(TME), capable of secreting pro-inflammatory factors to combat tumors while also promoting tumor growth through angiogenesis and immune suppression. This study aims to explore the characteristics of macrophages in lung adenocarcinoma (LUAD) and establish a prognostic model based on macrophage-related genes.

Method: We performed scRNA-seq analysis to investigate macrophage heterogeneity and their potential pseudotime evolutionary processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!