Adherence of Helicobacter pylori to inflamed gastric mucosa is dependent on the sialic acid-binding adhesin (SabA) and cognate sialylated/fucosylated glycans on the host cell surface. By in situ hybridization, H. pylori bacteria were observed in close association with erythrocytes in capillaries and post-capillary venules of the lamina propria of gastric mucosa in both infected humans and Rhesus monkeys. In vivo adherence of H. pylori to erythrocytes may require molecular mechanisms similar to the sialic acid-dependent in vitro agglutination of erythrocytes (i.e., sialic acid-dependent hemagglutination). In this context, the SabA adhesin was identified as the sialic acid-dependent hemagglutinin based on sialidase-sensitive hemagglutination, binding assays with sialylated glycoconjugates, and analysis of a series of isogenic sabA deletion mutants. The topographic presentation of binding sites for SabA on the erythrocyte membrane was mapped to gangliosides with extended core chains. However, receptor mapping revealed that the NeuAcalpha2-3Gal-disaccharide constitutes the minimal sialylated binding epitope required for SabA binding. Furthermore, clinical isolates demonstrated polymorphism in sialyl binding and complementation analysis of sabA mutants demonstrated that polymorphism in sialyl binding is an inherent property of the SabA protein itself. Gastric inflammation is associated with periodic changes in the composition of mucosal sialylation patterns. We suggest that dynamic adaptation in sialyl-binding properties during persistent infection specializes H. pylori both for individual variation in mucosal glycosylation and tropism for local areas of inflamed and/or dysplastic tissue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1626103 | PMC |
http://dx.doi.org/10.1371/journal.ppat.0020110 | DOI Listing |
Viruses
November 2024
Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
Recently, using a panel of recombinant CHO cell lines, we identified the coxsackie and adenovirus receptor (CAR) and histo-blood group antigens (HBGAs) or sialic acid as the minimum requirement for susceptibility to rhesus enteric calicivirus (ReCV) infections. While ReCVs cause lytic infection in LLC-MK2 cells, recombinant CHO (rCHO) cell lines did not exhibit any morphological changes upon infection. To monitor infectious virus production, rCHO cell cultures had to be freeze-thawed and titrated on LLC-MK2 monolayers.
View Article and Find Full Text PDFJ Med Virol
December 2024
Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.
In recent decades, epidemics and pandemics have multiplied throughout the world, with viruses generally being the primary responsible agents. Among these, influenza viruses play a key role, as they potentially cause severe respiratory distress, representing a major threat to public health. Our study aims to develop new broad-spectrum antivirals against influenza to improve the response to viral disease outbreaks.
View Article and Find Full Text PDFACS Nano
November 2024
State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing 100191, China.
The coronavirus disease 2019 (COVID-19) pandemic has driven major advances in virus research. The role of glycans in viral infection has been revealed, with research demonstrating that terminal sialic acids are key receptors during viral attachment and infection into host cells. However, there is an urgent demand for universal tools to study the mechanism of sialic acids in viral infections, as well as to develop therapeutic agents against epidemic viruses through the downregulation of terminal sialic acid residues on glycans acting as a glyco-virus checkpoint to accelerate virus clearance.
View Article and Find Full Text PDFGlobal health faces an immense burden from infectious diseases caused by viruses and intracellular protozoan parasites such as the coronavirus disease (COVID-19) and malaria, respectively. These pathogens propagate through the infection of human host cells. The first stage of this host cell infection mechanism is cell attachment, which typically involves interactions between the infectious agent and surface components on the host cell membranes, specifically heparan sulfate (HS) and/or sialic acid (SA).
View Article and Find Full Text PDFPrior work suggests influenza A virus (IAV) crosses the airway mucus barrier in a sialic acid-dependent manner through the actions of the viral envelope proteins, hemagglutinin and neuraminidase. However, host and viral factors that influence how efficiently mucus traps IAV remain poorly defined. In this work, we assessed how the physicochemical properties of mucus influence its ability to effectively capture IAV with altered sialic acid preference using fluorescence video microscopy and multiple particle tracking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!