[Ca2+ and sperm function].

Zhonghua Nan Ke Xue

School of Life Science, Northeast Normal University, Changchun, Jilin 130024, China.

Published: October 2006

Ca2+ is an important positive ion in the living body. Recently, there have been quite a few reports about the function of Ca2+ in sperm. Calcium is considered as a regulator of sperm motility, a participant in sperm capacitation, and an essential second messenger for acrosome reaction. This paper reviews the relationship of Ca2+ with sperm function.

Download full-text PDF

Source

Publication Analysis

Top Keywords

ca2+ sperm
8
[ca2+ sperm
4
sperm function]
4
function] ca2+
4
ca2+ positive
4
positive ion
4
ion living
4
living body
4
body reports
4
reports function
4

Similar Publications

Comparison of clinical artificial oocyte activation protocols on mouse egg activation and embryo development.

Reproduction

January 2025

D Cohen, Fundación IBYME. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)., Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina.

Artificial oocyte activation (AOA) with Ca2+ ionophores is an experimental procedure that benefits patients who fail to obtain fertilized eggs. However, the impact of non-physiological Ca2+ increases on cellular events involved in egg-embryo transition and early development remains poorly understood. Using the mouse model, this study compares common Ca2+ ionophore protocols applied in clinical practice - one or two exposures to A23187 or a single exposure to ionomycin - focusing on embryonic development and cellular events associated with egg activation.

View Article and Find Full Text PDF

Sperm Functional Status: A Multiparametric Assessment of the Fertilizing Potential of Bovine Sperm.

Vet Sci

December 2024

Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland.

Sperm viability is routinely assessed for the quality control of cryopreserved bovine sperm batches but is not usually conclusive regarding their fertilizing potential. In this study, we investigated the fertility predictive value of bull sperm viability in combination with DNA integrity or the functional status of viable sperm. In addition to sperm viability, we flow cytometrically assessed the percentage of sperm with high DNA fragmentation index (%DFI) and the fraction of viable sperm with low intracellular Ca content and functional mitochondria using the Sperm Chromatin Structure Assay and a five-color staining panel in 791 and 733 cryopreserved batches with non-return rate (NRR) records after ≥100 first services, respectively.

View Article and Find Full Text PDF

Objective: Mammalian sperm acquire fertilizing ability in the female reproductive tract and develop hyperactivated motility, which is indispensable for male fertility. Hyperactivated motility is initiated by Ca2+ influx via the sperm-specific ion channel, CatSper. CATSPER1, a CatSper pore subunit, possesses a long N-terminal intracellular domain and its degradation correlates with unsuccessful sperm migration in the female tract.

View Article and Find Full Text PDF

In Brief: Bovine sperm and seminal plasma (SP) proteoform atlas was characterized using top-down proteomics. Specific post-translational modifications and protein truncations correlated with semen freezability, with potential links to sperm functional processes.

Abstract: Top-down proteomics was employed to construct a proteoform atlas of sperm and SP from bulls with low semen freezability (LF) and high semen freezability (HF).

View Article and Find Full Text PDF
Article Synopsis
  • The CatSper channel is crucial for sperm fertility as it regulates calcium signaling necessary for sperm movement.
  • CATSPERε, a specific subunit of this channel, is vital for assembling the entire CatSper complex and enabling sperm hyperactivation.
  • Mice lacking CATSPERε are sterile due to defective sperm, highlighting the importance of this subunit in fertility and potential therapeutic targets.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!