Cell adhesion on biomaterial surface is crucial for the regeneration and function of clinically viable cell and tissues. In turn, the cellular phenotypes, following the mechanochemical transduction of adherent cells on biomaterials, are directly correlated to the biophysical responses of cells. However, the lack of an integrated bio-analytical system for probing the cell-substrate interface poses significant obstacles to understanding the behavior of cells on biomaterial surface. We have developed a novel method, based on the principle of confocal reflectance interference contrast microscopy (C-RICM) that has enabled us to study the biomechanical deformation of cells on biomaterial surfaces. In this article, we would like to describe our recent development of the C-RICM system that integrates a confocal fluorescence microscope, phase contrast microscope and GFP expression system. We shall demonstrate the system by determining the adhesion contact kinetics, initial deformation rate, cytoskeleton structures of adherent cells on extracellular matrices (e.g., collagen and fibronectin) and biodegradable polymer (e.g., poly(lactic acid)) during long-term culture. We shall demonstrate that this unique approach could provide valuable biophysical information necessary for designing optimized biomaterial surfaces for cell/tissue regeneration applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-0-387-34133-0_11 | DOI Listing |
Nanotechnology
January 2025
Department of Biotechnology, Kalasalingam Academy of Research and Education (Deemed to be University), Anand Nagar, School of Bio, Chemical & Process Enginneering, Krishnankoil, Krishnan Kovil, Tamil Nadu, 626126, INDIA.
Significant progress has been made in cancer therapy with protein-based nanocarriers targeted directly to surface receptors for drug delivery. The nanocarriers are a potentially effective solution for the potential drawbacks of traditional chemotherapy, such as lack of specificity, side effects, and development resistance. Peptides as nanocarriers have been designed based on their biocompatible, biodegradable, and versatile functions to deliver therapeutic agents into cancer cells, reduce systemic toxicity, and maximize therapy efficacy through utilizing targeted ligands such as antibodies, amino acids, vitamins, and other small molecules onto protein-based nanocarriers and thus ensuring that drugs selectively accumulate in the cancer cells instead of healthy organs/drug release at a target site without effects on normal cells, which inherently caused less systemic toxicity/off-target effect.
View Article and Find Full Text PDFLangmuir
January 2025
Chemistry and Structure of novel Materials, University of Siegen, Paul-Bonatz Strasse 9-11, 57068 Siegen, Germany.
The surface charge of metal oxides is an important property that significantly contributes to a wide range of phenomena, including adsorption, catalysis, and material science. The surface charge can be predicted by determining the isoelectric point (IEP) of a material and the pH of a solution. Although there have been several studies of the IEP of metal oxide (nano)particles, only a few have reported the IEP of metal oxide films.
View Article and Find Full Text PDFAdv Mater
January 2025
Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, 70125, Italy.
DNA can be readily amplified through replication, enabling the detection of a single-target copy. A comparable performance for proteins in immunoassays has yet to be fully assessed. Surface-plasmon-resonance (SPR) serves as a probe capable of performing assays at concentrations typically around 10⁻⁹ molar.
View Article and Find Full Text PDFSmall
January 2025
Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
A 3D DNA spatial chip (DSC) based on an icosahedral DNA origami framework is introduced to construct customized circular single-stranded DNA (c-ssDNA) for data storage. Within the confined space of the DSC, thirty addressable location sequences extending from the framework edges are available for designing circular paths and directing the assembly of a series of information oligonucleotides for efficient ligation. This strategy is verified by constructing c-ssDNAs from up to 15 fragments to encode two poems (800 and 860 nucleotides).
View Article and Find Full Text PDFHistol Histopathol
January 2025
Institute for Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain.
The use of tissues of porcine origin has gained significant momentum in the scientific community due to their anatomical and physiological resemblance to human tissues. This review provides a comprehensive overview of the key biological features of porcine ocular structures, including the cornea, conjunctiva, and associated tissues, in comparison to their human counterparts. Additionally, this review outlined the ex vivo applications of these tissues in the study of different biological processes and the simulation of pathological conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!