Soluble and insoluble polysaccharides were derivatized with diethylenetriaminepentaacetic acid (DTPA) and/or spin-labeled with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO). Polysaccharides derivatized with DTPA were prepared via cyanogen bromide activation, coupling to a diamine linker, and to DTPA anhydride. Spin-labeled polysaccharides were also prepared via cyanogen bromide activation. The extent of derivatization for dextran (18 kDa) was about 120 glucose units per DTPA, and for cellulose and starch about 15-30 units per DTPA. For spin-labeled polysaccharides, the average loading ranged from 1 nitroxide per 16 glucose units for starch to 181 for dextran (82 kDa). These derivatized paramagnetic polysaccharides were shown to be more effective relaxants than the small paramagnetic molecules alone. Both soluble and insoluble polysaccharide-linker-DTPA-Gd(III) complexes were effectively cleared from the body (rats) after oral administration. After intravenous administration, the biodistribution of dextran-linker-DTPA-Gd(III) complexes differed significantly from that of GdDTPA. Reduction of the nitroxide by ascorbic acid was retarded in the polysaccharide derivatives, particularly in starch derivatized with both nitroxide and linker-DTPA-Cu(II). These agents showed contrast enhancement in the gastrointestinal tract of rabbits.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.1910170222DOI Listing

Publication Analysis

Top Keywords

spin-labeled polysaccharides
12
soluble insoluble
8
polysaccharides derivatized
8
prepared cyanogen
8
cyanogen bromide
8
bromide activation
8
dextran kda
8
glucose units
8
units dtpa
8
polysaccharides
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!