Second messengers mediating activation of chloride current by intracellular GTP gamma S in bovine chromaffin cells.

J Physiol

Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany.

Published: May 1991

1. Intracellular mechanisms and second messengers involved in chloride current activation by intracellular GTP gamma S (guanosine 5'-O-(3-thiotriphosphate] in bovine chromaffin cells were studied using the whole-cell patch-clamp technique combined with measurements of intracellular calcium [Ca2+]i. 2. No correlation between the time of current activation and the appearance of [Ca2+]i transients was observed; intracellular introduction of sufficient EGTA (10 mM) to suppress the [Ca2+]i transients did not affect the current activation by GTP gamma S. 3. The cyclic nucleotides, cyclic AMP or cyclic GMP, did not activate the current when introduced intracellularly (50-250 microM). The ability of GTP gamma S to activate the current decreased when cyclic GMP (250 microM), together with MgATP (2 mM), was added to the perfusate. 4. Neomycin (0.5-1 mM), a presumed inhibitor of phospholipase C effectively prevented the current activation by GTP gamma S but it did not prevent [Ca2+]i transients. 5. Modulation of protein kinase C activity using specific inhibitors (H-7, 300 microM; polymyxin B, 400 U/ml) or activators (phorbol ester PMA, 100 nM, 20-90 min at 37 degrees C) did not affect the current activation by GTP gamma S nor did it cause current activation in the absence of GTP gamma S. 6. Activation of the current by GTP gamma S could be prevented by incubating the cells for 10-15 min with 2.5 microM p-bromophenacyl bromide (p-BPB), an inhibitor of phospholipase A2 activity. Exogenous arachidonic acid (5-10 microM), applied extracellularly or intracellularly, neither activated the current itself nor did it interfere with its activation by GTP gamma S. 7. Activation of the current by GTP gamma S could also be prevented by incubating the cells with 1 microM-nordihydroguaiaretic acid (NDGA), an inhibitor of lipoxygenase, but not with indomethacin (2 microM), an inhibitor of cyclo-oxygenase pathway of arachidonic acid metabolism. 8. It is suggested that chloride current activation by GTP gamma S in bovine chromaffin cells involves G protein-mediated stimulation of phospholipase A2 activity and subsequent formation of lipoxygenase product(s) of arachidonic acid metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1181531PMC
http://dx.doi.org/10.1113/jphysiol.1991.sp018576DOI Listing

Publication Analysis

Top Keywords

gtp gamma
44
current activation
28
activation gtp
20
current
13
chloride current
12
bovine chromaffin
12
chromaffin cells
12
[ca2+]i transients
12
arachidonic acid
12
activation
11

Similar Publications

Background: Pancreatic ductal adenocarcinoma (PDAC) is mostly refractory to immunotherapy due to immunosuppression in the tumor microenvironment and cancer cell-intrinsic T cell tolerance mechanisms. PDAC is described as a "cold" tumor type with poor infiltration by T cells and factors leading to intratumoral T cell suppression have thus received less attention. Here, we identify a cancer cell-intrinsic mechanism that contributes to a T cell-resistant phenotype and describes potential combinatorial therapy.

View Article and Find Full Text PDF

Background: Diabetic kidney disease (DKD) is one of the typical complications of type 2 diabetes (T2D), with approximately 10 % of DKD patients experiencing a Rapid decline (RD) in kidney function. RD leads to an increased risk of poor outcomes such as the need for dialysis. Albuminuria is a known kidney damage biomarker for DKD, yet RD cases do not always show changes in albuminuria, and the exact mechanism of RD remains unclear.

View Article and Find Full Text PDF

GNG2 inhibits brain metastases from colorectal cancer via PI3K/AKT/mTOR signaling pathway.

Sci Rep

January 2025

Department of Gastrointestinal Surgery, Third Xiangya Hospital, Central South University, Changsha, 410006, China.

G-protein gamma subunit 2 (GNG2) plays a vital role in various cellular processes, yet its specific function in colorectal cancer (CRC), particularly in highly invasive cases and brain metastasis, remains unclear. This study identifies GNG2 as a key regulator in metastatic colorectal cancer (mCRC) through bioinformatics analysis and experimental validation. Functional enrichment analyses reveal that GNG2 is related to the PI3K/AKT/mTOR signaling pathway and cell cycle regulation.

View Article and Find Full Text PDF

QM/MM study reveals novel mechanism of KRAS and KRAS catalyzed GTP hydrolysis.

Int J Biol Macromol

January 2025

Faculty of Applied Sciences, Macao Polytechnic University, Macao, SAR, China. Electronic address:

As a crucial drug target, KRAS can regulate most cellular processes involving guanosine triphosphate (GTP) hydrolysis. However, the mechanism of GTP hydrolysis has remained controversial over the past decades. Here, several different GTP hydrolysis mechanisms catalyzed by wild-type KRAS (WT-KRAS) and KRAS mutants were discussed via four QM/MM calculation models.

View Article and Find Full Text PDF

Background: Seipin is a protein encoded by the BSCL2 gene in humans and SEI1 gene in yeast, forming an Endoplasmic Reticulum (ER)-bound homo-oligomer. This oligomer is crucial in targeting ER-lipid droplet (LD) contact sites, facilitating the delivery of triacylglycerol (TG) to nascent LDs. Mutations in BSCL2, particularly N88S and S90L, lead to seipinopathies, which correspond to a cohort of motor neuron diseases (MNDs) characterized by the accumulation of misfolded N88S seipin into inclusion bodies (IBs) and cellular dysfunctions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!