This study investigated the effects of the internal recycling rate on nutrients removal in a sequential anoxic/anaerobic membrane bioreactor (SAM). Microbial community structure in sludge from the SAM was studied using quinone profile method. Above 98% COD, 68% nitrogen, and 55% phosphorus removal efficiencies were achieved when the internal recycling rate was 2.5 times influent flow. At that rate, the optimum specific nitrate loading rate and COD/NO(3)-N ratio were found to be 2.24 mgNO(3)-N g(-1) MLSS h(-1) and 9.13, respectively. Batch tests demonstrated that anoxic condition suppressed phosphorus release, and that denitrification was also influenced by initial substrate concentration. Denitrification appeared to have some priority over phosphorus release for substrate uptake. Microbial community analysis revealed a predominance of the subclass beta-Proteobacteria. Furthermore, it was found that Rhodocyclus-related bacteria were efficient at phosphorus removal than Actinobacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00449-006-0098-4DOI Listing

Publication Analysis

Top Keywords

internal recycling
12
recycling rate
12
microbial community
12
effects internal
8
community structure
8
sequential anoxic/anaerobic
8
anoxic/anaerobic membrane
8
membrane bioreactor
8
phosphorus removal
8
phosphorus release
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!