The nuclear receptors CAR and PXR were first characterized as xenosensing transcription factors regulating the induction of phase I and II xenobiotic-metabolizing enzymes as well as transporters in response to exogenous stimuli. It has now become clear, however, that these receptors cross-talk with endogenous stimuli as well, which extends their regulation to various physiological processes such as energy metabolism and cell growth. As recognition of the function of these receptors has widened, the molecular mechanism of their regulation has evolved from simple protein-DNA binding to regulation by complex protein-protein interactions. Novel mechanisms as to how xenobiotic exposure alters hepatic metabolic pathways such as gluconeogenesis and beta-oxidation have emerged. At the same time, the molecular mechanism of how endogenous stimuli, such as insulin, regulate xenobiotc metabolism via CAR and PXR have also become evident.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1892216PMC
http://dx.doi.org/10.1080/00498250600861827DOI Listing

Publication Analysis

Top Keywords

car pxr
12
nuclear receptors
8
receptors car
8
endogenous stimuli
8
molecular mechanism
8
regulation
4
pxr regulation
4
regulation hepatic
4
hepatic metabolism
4
metabolism nuclear
4

Similar Publications

Mechanism-based toxicity screening of organophosphate flame retardants using Tox21 assays and molecular docking analysis.

Chemosphere

November 2024

School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02504, Republic of Korea. Electronic address:

Article Synopsis
  • As regulations on brominated flame retardants tighten, concerns about organophosphate flame retardants (OPFRs) have risen due to their widespread usage.
  • This study screened 48 OPFRs for toxicity using Tox21 assays and molecular docking, assessing their interaction with human nuclear receptors related to endocrine disruption, stress response, and detoxification.
  • Findings indicated that a significant number of OPFRs interact with these receptors, suggesting they may pose health risks; particularly, aryl- and halogenated-OPFRs showed higher bioactivity and warrant further evaluation due to potential human exposure.
View Article and Find Full Text PDF

Hypertensive Nephropathy Changes the Expression of Drug-Metabolizing Enzymes and Transporters in Spontaneously Hypertensive Rat Liver and Kidney.

Eur J Drug Metab Pharmacokinet

November 2024

Changsha Research and Development Center on Obstetric and Gynecologic Traditional Chinese Medicine Preparation, NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, No. 53 Xiangchun Road, Kaifu District, Changsha, 410008, Hunan, China.

Background And Objectives: Hypertensive nephropathy (HN) has become one of the main causes of end-stage renal disease. Drug combination therapy is a common clinical treatment for HN. However, the impact of HN on drug-metabolizing enzymes and transporters, which may lead to drug-drug interactions (DDIs) and even trigger toxic side effects, remains unclear.

View Article and Find Full Text PDF

Some rat and dog toxicology studies with the fungicide valifenalate showed minimal, non-adverse thyroid changes, mostly above the maximum tolerated dose, and concomitantly with liver effects. This publication describes their mode of action (MOA), combining in vivo and new approach methodologies (NAMs), in a weight of evidence approach. Data demonstrate a MOA of liver enzyme induction via nuclear receptor CAR/PXR activation, increased thyroxine (T4) metabolism and elevated thyroid stimulating hormone (TSH) level, leading to thyroid follicular cell hypertrophy and increased thyroid weight.

View Article and Find Full Text PDF

Induction of cytochrome P450 via upregulation of CAR and PXR: a potential mechanism for altered florfenicol metabolism by macranthoidin B .

Front Pharmacol

October 2024

Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China.

Introduction: Macranthoidin B (MB) is a primary active component of In Chinese veterinary clinics, is frequently used in combination with florfenicol to prevent and treat infections in livestock and poultry. However, potential interactions between and florfenicol remain unclear. To systematically study these interactions, it is crucial to investigate the individual phytochemicals within .

View Article and Find Full Text PDF

Effects of di-(2-ethylhexyl) phthalate and its metabolites on transcriptional activity via human nuclear receptors and gene expression in HepaRG cells.

Toxicol In Vitro

December 2024

School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan. Electronic address:

Di-(2-ethylhexyl) phthalate (DEHP) is widely used as a plasticizer in polyvinyl chloride products. DEHP exposure in humans is of great concern due to its endocrine-disrupting properties. In this study, we characterized the agonistic activities of DEHP and its five metabolites, mono-(2-ethylhexyl) phthalate (MEHP), 5OH-MEHP, 5oxo-MEHP, 5cx-MEPP and 2cx-MMHP against human nuclear receptors, peroxisome proliferator-activated receptor α (PPARα), pregnane X receptor (PXR), and constitutive androstane receptor (CAR) using transactivation assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!