Demineralized bone matrix (DBM) is a complex mixture of osteoinductive bone morphogenetic proteins (BMPs), as well as BMP-binding proteins that regulate BMP bioactivity and localization. Our aim was to use modern proteomic methods to identify additional BMP-binding proteins in DBM, with initial emphasis on the most abundant. Relatively large, water-soluble noncollagenous proteins (NCPs) were preferentially extracted from DBM with alkalinized urea. The insoluble residue, which contained the BMP activity, was extracted with GuHCl/CaCl2, dialyzed versus citrate, defatted, resuspended in GuHCl, dialyzed sequentially against Triton X-100 and water, pelleted, and lyophilized. The proteins in this pellet were fractionated by hydroxyapatite affinity chromatography. Proteins that copurified with BMP bioactivity were separated by SDS-PAGE. Distinct bands were excised, and the proteins in them were reduced and alkylated, digested with trypsin, eluted, and subjected to MALDI/ToF MS (matrix-assisted laser-desorption ionization time-of-flight mass spectrometry). Computer-assisted peptide fingerprint analysis of the MS profiles was used to identify C-terminal lysine-6-oxidase; dermatopontin (DPT); histones H2A2, H2A3, and H2B; and trace amounts of gamma-actin. DPT is a 22-kDa, tyrosine-rich acidic matrix protein not previously recognized to be among the most abundant small proteins to copurify with BMP bioactivity in DBM. We tested the effects of DPT on BMP-2 stimulation of alkaline phosphatase (ALP) activity in C2C12 cells. BMP-2 stimulated ALP activity in C2C12 cells by 6.2-fold above basal levels. DPT alone had no effect on ALP activity in C2C12 cells. When added with BMP-2, DPT blocked 40% of the stimulatory effect of BMP-2 on ALP activity in C2C12 cells. DPT is an abundant protein in DBM, and it can inhibit the stimulatory effects of BMP-2 on ALP activity in C2C12 cells.

Download full-text PDF

Source
http://dx.doi.org/10.1080/03008200600995908DOI Listing

Publication Analysis

Top Keywords

c2c12 cells
24
alp activity
20
activity c2c12
20
bmp bioactivity
12
proteins
9
stimulation alkaline
8
alkaline phosphatase
8
demineralized bone
8
bone matrix
8
bmp-binding proteins
8

Similar Publications

Developing scaffolds supporting functional cell attachment and tissue growth is critical in basic cell research, tissue engineering, and regenerative medicine approaches. Though poly(ethylene glycol) (PEG) and its derivatives are attractive for hydrogels and scaffold fabrication, they often require bioactive modifications due to their bioinert nature. In this work, biomimetic synthesized conductive polypyrrole-poly(3,4-ethylenedioxythiophene) copolymer doped with poly(styrenesulfonate) (PPy-PEDOT:PSS) was used as a biocompatible coating for poly(ethylene glycol) diacrylate (PEGDA) hydrogel to support neuronal and muscle cells' attachment, activity, and differentiation.

View Article and Find Full Text PDF

Skeletal muscle (SM) is essential for movement, stability, and overall body function, and it readily adapts to changes in energy demand. Myogenesis is energy-intensive and involves complex molecular and cellular events. We recently demonstrated that the absence of lysosomal acid lipase (LAL) significantly impacts the SM phenotype, primarily by disrupting energy homeostasis and reducing ATP production.

View Article and Find Full Text PDF

Dapagliflozin attenuates skeletal muscle atrophy in diabetic nephropathy mice through suppressing Gasdermin D-mediated pyroptosis.

Int Immunopharmacol

January 2025

School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China; Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China. Electronic address:

Background: Skeletal muscle atrophy is a clinical concern in diabetic nephropathy, and without effective therapeutic approaches. Massive evidence has demonstrated that dapagliflozin, a sodium-glucose co-transporter 2 inhibitor can relieve diabetic nephropathy by inhibiting glucose re-absorption or podocyte pyroptosis. Nevertheless, whether dapagliflozin could treat skeletal muscle atrophy or the potential protection mechanism in diabetic nephropathy mice is unclear.

View Article and Find Full Text PDF

Sarcopenia is an age-related muscle atrophy syndrome characterized by the loss of muscle strength and mass. Although many agents have been used to treat sarcopenia, there are no successful treatments to date. In this study, we identified Danshensu sodium salt (DSS) as a substantial suppressive agent of muscle atrophy.

View Article and Find Full Text PDF

Astragalus polysaccharide (APS) is a bioactive component of Astragalus species that shows protective effects on C2C12 muscle cell proliferation and differentiation under hypoxic conditions. In this study, EdU staining, cell scratch testing, quantitative reverse-transcription polymerase chain reaction, Western blotting, immunofluorescence analysis, and lnc-GD2H silencing were used to investigated the protective effects and mechanisms of action of APS against CoCl-induced hypoxic injury of muscle cells. Our results showed that APS promoted cell proliferation and increased the expression of lnc-GD2H, c-Myc, and Ki-67.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!