Intracellular protein misfolding/aggregation are features of many late-onset neurodegenerative diseases, called proteinopathies. These include Alzheimer's disease, Parkinson's disease, tauopathies, and polyglutamine expansion diseases [e.g., Huntington's disease; and various spinocerebellar ataxias (SCAs), like SCA3]. There are no effective strategies to slow or prevent the neurodegeneration resulting from these diseases in humans. The mutations causing many proteinopathies (e.g., polyglutamine diseases and tauopathies) confer novel toxic functions on the specific protein, and disease severity frequently correlates with the expression levels of the protein. Thus, the factors regulating the synthesis and clearance of these aggregate-prone proteins are putative therapeutic targets. The proteasome and autophagy-lysosomal pathways are the major routes for mutant huntingtin fragment clearance. While the narrow proteasome barrel precludes entry of oligomers/aggregates of mutant huntingtin (or other aggregate-prone intracellular proteins), such substrates can be degraded by macroautophagy (which we will call autophagy). We showed that the autophagy inducer rapamycin reduced the levels of soluble and aggregated huntingtin and attenuated its toxicity in cells, and in transgenic Drosophila and mouse models. We extended the range of intracellular proteinopathy substrates that are cleared by autophagy to a wide range of other targets, including proteins mutated in certain SCAs, forms of alpha-synuclein mutated in familial forms of Parkinson's disease, and tau mutants that cause frontotemporal dementia/tauopathy. In this chapter, we consider the therapeutic potential of autophagy upregulation for various proteinopathies, and describe how this strategy may act both by removing the primary toxin (the misfolded/aggregate-prone protein) and by reducing susceptibility to apoptotic insults.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0070-2153(06)76003-3 | DOI Listing |
Sci Rep
November 2024
CIBER of Diabetes and Related Metabolic Disorders, Instituto de Salud Carlos III, 28040, Madrid, Spain.
Aging Cell
November 2024
The Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
One of the main hallmarks of Parkinson's disease (PD) pathology is the spread of the aggregate-prone protein α-synuclein (α-syn), which can be detected in the plasma and cerebrospinal fluid of patients as well as in the extracellular environment of neuronal cells. The secreted α-syn can exhibit "prion-like" behavior and transmission to naïve cells can promote conformational changes and pathology. The precise role of plasma membrane proteins in the pathologic process of α-syn is yet to be fully resolved.
View Article and Find Full Text PDFNat Commun
October 2024
Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany.
Increasing evidence suggests an essential function for autophagy in unconventional protein secretion (UPS). However, despite its relevance for the secretion of aggregate-prone proteins, the mechanisms of secretory autophagy in neurons have remained elusive. Here we show that the lower motoneuron disease-associated guanine exchange factor Plekhg5 drives the UPS of Sod1.
View Article and Find Full Text PDFBMJ Open
August 2024
Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!