Bik1p is the yeast Saccharomyces cerevisiae representative of the CLIP-170 family of microtubule plus-end tracking proteins. Bik1p shares a number of similarities with its mammalian counterpart CLIP-170, including an important role in dynein function. However, Bik1p and CLIP-170 differ in several significant ways, including the mechanisms utilized to track microtubule plus ends. In addition to presenting functional comparisons between Bik1p and CLIP-170, we provide sequence analyses that reveal previously unrecognized similarities between Bik1p and its animal counterparts. We examine in detail what is known about the functions of Bik1p and consider the various roles that Bik1p plays in positioning the yeast mitotic spindle. This chapter also highlights several recent findings, including the contribution of Bik1p to the yeast mating pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0070-2153(06)76002-1 | DOI Listing |
Mol Biol Cell
December 2012
Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA.
Microtubules and microtubule-associated proteins are fundamental for multiple cellular processes, including mitosis and intracellular motility, but the factors that control microtubule-associated proteins (MAPs) are poorly understood. Here we show that two MAPs-the CLIP-170 homologue Bik1p and the Lis1 homologue Pac1p-interact with several proteins in the sumoylation pathway. Bik1p and Pac1p interact with Smt3p, the yeast SUMO; Ubc9p, an E2; and Nfi1p, an E3.
View Article and Find Full Text PDFPLoS One
October 2010
Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.
Ser172 of β tubulin is an important residue that is mutated in a human brain disease and phosphorylated by the cyclin-dependent kinase Cdk1 in mammalian cells. To examine the role of this residue, we used the yeast S. cerevisiae as a model and produced two different mutations (S172A and S172E) of the conserved Ser172 in the yeast β tubulin Tub2p.
View Article and Find Full Text PDFPLoS One
October 2009
Department of Experimental Oncology, European Institute of Oncology, Milan, Italy.
Background: Kinetochores attach sister chromatids to microtubules of the mitotic spindle and orchestrate chromosome disjunction at anaphase. Although S. cerevisiae has the simplest known kinetochores, they nonetheless contain approximately 70 subunits that assemble on centromeric DNA in a hierarchical manner.
View Article and Find Full Text PDFGenetics
December 2008
Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74078, USA.
Accurate positioning of the mitotic spindle is important for the genetic material to be distributed evenly in dividing cells, but little is known about the mechanisms that regulate this process. Here we report that two microtubule-associated proteins important for spindle positioning interact with several proteins in the sumoylation pathway. By two-hybrid analysis, Kar9p and Bim1p interact with the yeast SUMO Smt3p, the E2 enzyme Ubc9p, an E3 Nfi1p, as well as Wss1p, a weak suppressor of a temperature-sensitive smt3 allele.
View Article and Find Full Text PDFJ Cell Sci
May 2008
INSERM, U836, Groupe de Physiopathologie du Cytosquelette, Grenoble, France.
Bik1p is the budding yeast counterpart of the CLIP-170 family of microtubule plus-end tracking proteins, which are required for dynein localization at plus ends and dynein-dependent spindle positioning. CLIP-170 proteins make up a CAP-Gly microtubule-binding domain, which sustains their microtubule plus-end tracking behaviour. However, in yeast, Bik1p travels towards plus ends as a cargo of the plus-end-directed kinesin Kip2p.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!