Background: We describe Support Vector Machine (SVM) applications to classification and clustering of channel current data. SVMs are variational-calculus based methods that are constrained to have structural risk minimization (SRM), i.e., they provide noise tolerant solutions for pattern recognition. The SVM approach encapsulates a significant amount of model-fitting information in the choice of its kernel. In work thus far, novel, information-theoretic, kernels have been successfully employed for notably better performance over standard kernels. Currently there are two approaches for implementing multiclass SVMs. One is called external multi-class that arranges several binary classifiers as a decision tree such that they perform a single-class decision making function, with each leaf corresponding to a unique class. The second approach, namely internal-multiclass, involves solving a single optimization problem corresponding to the entire data set (with multiple hyperplanes).
Results: Each SVM approach encapsulates a significant amount of model-fitting information in its choice of kernel. In work thus far, novel, information-theoretic, kernels were successfully employed for notably better performance over standard kernels. Two SVM approaches to multiclass discrimination are described: (1) internal multiclass (with a single optimization), and (2) external multiclass (using an optimized decision tree). We describe benefits of the internal-SVM approach, along with further refinements to the internal-multiclass SVM algorithms that offer significant improvement in training time without sacrificing accuracy. In situations where the data isn't clearly separable, making for poor discrimination, signal clustering is used to provide robust and useful information--to this end, novel, SVM-based clustering methods are also described. As with the classification, there are Internal and External SVM Clustering algorithms, both of which are briefly described.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1683575 | PMC |
http://dx.doi.org/10.1186/1471-2105-7-S2-S4 | DOI Listing |
Sci Rep
December 2024
School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya, 47500, Selangor Darul Ehsan, Malaysia.
Cervical cancer is a deadly disease in women globally. There is a greater chance of getting rid of cervical cancer in case of earliest diagnosis. But for some patients, there is a chance of recurrence.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Breast Surgery, Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, China.
Early prediction of patient responses to neoadjuvant chemotherapy (NACT) is essential for the precision treatment of early breast cancer (EBC). Therefore, this study aims to noninvasively and early predict pathological complete response (pCR). We used dynamic ultrasound (US) imaging changes acquired during NACT, along with clinicopathological features, to create a nomogram and construct a machine learning model.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Applied Mathematics, Faculty of Mathematical Science, Ferdowsi University of Mashhad, Mashhad, Iran.
This study presents a web application for predicting cardiovascular disease (CVD) and hypertension (HTN) among mine workers using machine learning (ML) techniques. The dataset, collected from 699 participants at the Gol-Gohar mine in Iran between 2016 and 2020, includes demographic, occupational, lifestyle, and medical information. After preprocessing and feature engineering, the Random Forest algorithm was identified as the best-performing model, achieving 99% accuracy for HTN prediction and 97% for CVD, outperforming other algorithms such as Logistic Regression and Support Vector Machines.
View Article and Find Full Text PDFJ Neuroimaging
December 2024
Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
Background And Purpose: In idiopathic normal pressure hydrocephalus (iNPH) patients, cerebrospinal fluid (CSF) flow is typically evaluated with a cardiac-gated two-dimensional (2D) phase-contrast (PC) MRI through the cerebral aqueduct. This approach is limited by the evaluation of a single location and does not account for respiration effects on flow. In this study, we quantified the cardiac and respiratory contributions to CSF movement at multiple intracranial locations using a real-time 2D PC-MRI and evaluated the diagnostic value of CSF dynamics biomarkers in classifying iNPH patients.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of ophthalmology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China.
Background: This study examined the interhemispheric integration function pattern in patients with iridocyclitis utilizing the voxel-mirrored homotopic connectivity (VMHC) technique. Additionally, we investigated the ability of VMHC results to distinguish patients with iridocyclitis from healthy controls (HCs), which may contribute to the development of objective biomarkers for early diagnosis and intervention in clinical set.
Methods: Twenty-six patients with iridocyclitis and twenty-six matched HCs, in terms of sex, age, and education level, underwent resting-state functional magnetic resonance imaging (fMRI) examinations.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!