Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Using transverse magnetic tweezers, we studied the dynamics of DNA compaction induced by hexaammine cobalt chloride under constant forces. Discontinuous DNA compaction events were found for forces ranging from 0.5 to 1.7 pN, with approximately 270 nm DNA adsorbed in each compaction event. Forces larger than 6 pN were found able to unravel the toroid in a similar intermittent stepwise manner. The observations indicate that the folding/unfolding events are transitions between two metastable structural states which are separated by a tension-dependent energy barrier. Analysis of the waiting time revealed that the degree of the package ordering of DNA in a toroid depends on the compaction kinetics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja064305a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!