The effect of added organic acids on the calcium availability of vegetables was investigated using the dialysis profiles obtained from an in vitro simulated gastrointestinal digestion with continuous-flow dialysis method. Citric acid was the most effective enhancer followed by tartaric, malic, and ascorbic acids. For amaranth, which has a low calcium availability (5.4%), a significant increase of availability was observed with increasing concentrations of all acids studied. With the continuous-flow dialysis approach, organic acids could be observed to promote the dialyzability even at an elevated intestinal pH. An enhancement effect from added organic acids was not clearly observed for Chinese kale, which itself contains a high amount of available calcium (52.9%).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf062073t | DOI Listing |
Poult Sci
December 2024
MOA Key Laboratory of Animal Virology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China. Electronic address:
The activity of intestinal stem cells (ISCs) can be modulated by Lactobacillus, which subsequently affects the mucosal absorptive capacity. However, the underlying mechanisms remain unclear. In this study, a total of 189 Hy-Line Brown chickens (Gallus) were randomly assigned to one of seven experimental groups (n = 27 per group).
View Article and Find Full Text PDFMar Pollut Bull
January 2025
School of Environmental and Geographic Sciences, Qingdao University, Qingdao 266071, China. Electronic address:
As a transitional zone where rivers meet the sea, estuaries are influenced by river transport and ocean tides, resulting in complex variations in parameters such as organic matter content, pH, and sediment salinity. This paper primarily explores the vertical migration patterns of polychlorinated biphenyls (PCBs) under complex conditions, focusing on the soil sediments in the Dagu River estuary area. We designed an indoor soil column leaching experiment to investigate how soil organic matter content, pH, and salinity affect the vertical migration of PCBs in soil.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
The combined application of dissimilatory iron-reducing bacteria (DIRB) and Fe(III) nanoparticles has garnered widespread interest in the contaminants transformation and removal. The efficiency of this composite system relies on the extracellular electron transfer (EET) process between DIRB and Fe(III) nanoparticles. While modifications to Fe(III) nanoparticles have demonstrated improvements in EET, enhancing DIRB activity also shows potential for further EET enhancement, meriting further investigation.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESP), Beijing, China; Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing, China; Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China. Electronic address:
Widespread detection in soils and sediments underscores the potential threats posed by persistent, bioaccumulative and toxic perfluorooctane sulfonate (PFOS) to ecosystems and organisms. Nevertheless, the formidable energy of the C-F bond imparts stability and hampers degradation. This study investigates the potential of boron carbide (BC), a hard-ceramic material often utilized in armor and abrasion contexts, for degrading solid-phase PFOS through ball milling.
View Article and Find Full Text PDFChemistry
January 2025
Osaka University, Institute for Open and Transdisciplinary Research Initiatives (OTRI), 1-6 Yamada-oka, 565-0871, Suita, JAPAN.
Considering the demand for organosulfur materials and the challenges associated with currently used oxidation processes, in this study, we evaluated the counter-cation of sodium chlorite (Na+ClO2-) with tetrabutylammonium chloride (Bu4N+Cl-) to synthesise tetrabutylammonium chlorite (Bu4N+ClO2-). Bu4N+ClO2- exhibited good solubility in organic solvents like chloroform (1.6 g mL-1) and ethyl acetate (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!