Microfluidic devices integrating membrane-based sample preparation with electrophoretic separation are demonstrated. These multilayer devices consist of 10 nm pore diameter membranes sandwiched between two layers of PDMS substrates with embedded microchannels. Because of the membrane isolation, material exchange between two fluidic layers can be precisely controlled by applied voltages. More importantly, since only small molecules can pass through the nanopores, the integrated membrane can serve as a filter or a concentrator prior to microchip electrophoresis under different design and operation modes. As a filter, they can be used for separation and selective injection of small analytes from sample matrix. This has been effectively applied in rapid determination of reduced glutathione in human plasma and red blood cells without any off-chip deproteinization procedure. Alternatively, in the concentrator mode, they can be used for online purification and preconcentration of macromolecules, which was illustrated by removing primers and preconcentrating the product DNA from a PCR product mixture.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.200600252DOI Listing

Publication Analysis

Top Keywords

microchip electrophoresis
8
integration nanoporous
4
nanoporous membranes
4
membranes sample
4
sample filtration/preconcentration
4
filtration/preconcentration microchip
4
electrophoresis microfluidic
4
microfluidic devices
4
devices integrating
4
integrating membrane-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!