The diagnosis of osteoporosis and monitoring of treatment is a challenge for physicians due to the large number of available tests and complexities of interpretation. Bone mineral density (BMD) testing is a non-invasive measurement to assess skeletal health. The "gold-standard" technology for diagnosis and monitoring is dual-energy X-ray absorptiometry (DXA) of the spine, hip, or forearm. Fracture risk can be predicted using DXA and other technologies at many skeletal sites. Despite guidelines for selecting patients for BMD testing and identifying those most likely to benefit from treatment, many patients are not being tested or receiving therapy. Even patients with very high risk of fracture, such as those on long-term glucocorticoid therapy or with prevalent fragility fractures, are often not managed appropriately. The optimal testing strategy varies according to local availability and affordability of BMD testing. The role of BMD testing to monitor therapy is still being defined, and interpretation of serial studies requires special attention to instrument calibration, acquisition technique, analysis, and precision assessment. BMD is usually reported as a T-score, the standard deviation variance of the patient's BMD compared to a normal young-adult reference population. BMD in postmenopausal women is classified as normal, osteopenia, or osteoporosis according to criteria established by the World Health Organization. Standardized methodologies are being developed to establish cost-effective intervention thresholds for pharmacological therapy based on T-score combined with clinical risk factors for fracture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/s0004-27302006000400004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!