The DexAide right ventricular assist device (RVAD) is an implantable centrifugal pump modified from the CorAide left ventricular assist device. As previously published, in vitro performance testing of the DexAide RVAD has met design criteria, and the nominal operating condition of 4 l/min and 20 mm Hg pressure rise was achieved at 2,000 rpm, with a power consumption of 1.9 watts. In vivo studies in 14 calves have demonstrated acceptable hemodynamic characteristics. The calf inflow cannula design is still evolving to minimize depositions on the cannula observed in most experiments. Fitting studies were performed in 5 cadavers and 2 patients to reconfigure the cannulae for use in humans. The design and development of external electronics have been completed for the stand-alone RVAD system, and verification tests are under way in preparation for preclinical tests. Work on the external electronics design for the biventricular assist system is ongoing. In conclusion, the initial in vitro and in vivo studies have demonstrated acceptable hemodynamic characteristics of the DexAide RVAD. The design and development of the external electronic components for the stand-alone RVAD system have been completed. The calf inflow cannula is being redesigned, and chronic in vivo tests are under way.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.mat.0000240700.03478.d0DOI Listing

Publication Analysis

Top Keywords

ventricular assist
12
assist device
12
dexaide ventricular
8
dexaide rvad
8
vivo studies
8
demonstrated acceptable
8
acceptable hemodynamic
8
hemodynamic characteristics
8
calf inflow
8
inflow cannula
8

Similar Publications

Sex-specific effects of culture and embryo transfer on cardiac growth in sheep offspring.

J Mol Cell Cardiol Plus

September 2023

Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.

Embryo culture with and without human serum supplementation, previously common practice in assisted reproductive technologies (ARTs), have been associated with increased heart weight in early and late gestation in the sheep fetus. The present study aimed to determine whether the effects of embryo culture and transfer on cardiac growth and associated signalling pathways persist after birth. Embryos were either transferred to an intermediate ewe (ET) or cultured in the absence (IVC) or presence of human serum (IVCHS) and with methionine supplementation (IVCHS+M) for 6 days after mating.

View Article and Find Full Text PDF

Omecamtiv mecarbil in precision-cut living heart failure slices: A story of a double-edged sword.

J Mol Cell Cardiol Plus

September 2023

Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands.

Heart failure (HF) is a rapidly growing pandemic while medical treatment options remain limited. Omecamtiv mecarbil (OM) is a novel HF drug that directly targets the myosin heads of the cardiac muscle. This study used living myocardial slices (LMS) from patients with HF to evaluate the direct biomechanical effects of OM as compared to dobutamine.

View Article and Find Full Text PDF

Pump is a vital component for expelling the perfusate in small animal isolated organ normothermic machine perfusion (NMP) systems whose flexible structure and rhythmic contraction play a crucial role in maintaining perfusion system homeostasis. However, the continuous extrusion forming with the rigid stationary shaft of the peristaltic pumps can damage cells, leading to metabolic disorders and eventual dysfunction of transplanted organs. Here, we developed a novel biomimetic blood-gas system (BBGs) for preventing cell damage.

View Article and Find Full Text PDF

Background: Better risk stratification is needed to evaluate patients with non-ischemic cardiomyopathy (NICM) for prophylactic implantable cardioverter-defibrillators (ICD). Growing evidence suggests cardiac magnetic resonance imaging (CMR) may be useful in this regard.

Objective: We aimed to determine if late-gadolinium enhancement (LGE) seen on CMR (dichotomized as none/minimal <2% vs significant ≥2%) predicts appropriate ICD therapies (primary endpoint) and/or all-cause mortality/transplant/left-ventricular assist device (LVAD) implantation (secondary endpoint) in NICM patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!