Objectives: To visualize the velocity gradients and the vorticities of physiological unsteady nasal flow using the computational fluid dynamics method and to compare the inspiratory phase and expiratory phase flow patterns.
Design: An anatomically correct 3-dimensional nasal and pharyngeal cavity was constructed from computed tomographic images of a healthy adult nose and pharynx. The unsteady state Navier-Stokes and continuity equations were solved numerically on inspiratory and expiratory nasal flow.
Setting: Numerical simulation application.
Participants: Coronary and axial computed tomographic images from a healthy adult were used.
Main Outcome Measures: The detailed velocity distribution and vorticity (resistance) distribution of nasal airflow were visualized using the computational fluid dynamics method (an imaging technology for regional flow factors [velocity, vector, streamline, and vortex]).
Results: In the inspiratory phase, a high-velocity area was prominent in the middle meatus, and the highest vorticity area had good agreement with this region. In the expiratory phase, the distributions of velocity and vorticities were flatter than those in the inspiratory phase.
Conclusion: The computational fluid dynamics model allows the investigation of airflow elements under physiological conditions, as well as the examination of the effect of nasal structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1001/archotol.132.11.1203 | DOI Listing |
J Neurosurg
January 2025
1Department of Bioengineering, George Mason University, Fairfax, Virginia.
Objective: The complex mix of factors, including hemodynamic forces and wall remodeling mechanisms, that drive intracranial aneurysm growth is unclear. This study focuses on the specific regions within aneurysm walls where growth occurs and their relationship to the prevalent hemodynamic conditions to reveal critical mechanisms leading to enlargement.
Methods: The authors examined hemodynamic models of 67 longitudinally followed aneurysms, identifying 88 growth regions.
PLoS One
January 2025
Cardiovascular Center, Division of Cardiology, Korea University Guro Hospital, Seoul, Republic of Korea.
Background: The phase angle (PhA) in bioelectrical impedance analysis (BIA) reflects the cell membrane integrity or body fluid equilibrium. We examined how the PhA aligns with previously known markers of acute heart failure (HF) and assessed its value as a screening tool.
Methods: PhA was measured in 50 patients with HF and 20 non-HF controls along with the edema index (EI), another BIA parameter suggestive of edema.
Biosensors (Basel)
January 2025
Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan.
In this study, we utilized a terahertz chemical microscope (TCM) to map surface potential changes induced by molecular interactions on silicon-on-sapphire (SOS) substrates. By functionalizing the SOS substrate with DNA aptamers and an ion-selective membrane, we successfully detected and visualized aptamer-neurochemical complexes through the terahertz amplitude. Additionally, comparative studies of DNA aptamers in PBS buffer and artificial cerebrospinal fluid (aCSF) were performed by computational structure modeling and terahertz measurements.
View Article and Find Full Text PDFEntropy (Basel)
January 2025
Faculty of Civil Engineering, Architecture and Environmental Engineering, Lodz University of Technology, 90-924 Łódź, Poland.
The main aim of this study is to achieve the numerical solution for the Navier-Stokes equations for incompressible, non-turbulent, and subsonic fluid flows with some Gaussian physical uncertainties. The higher-order stochastic finite volume method (SFVM), implemented according to the iterative generalized stochastic perturbation technique and the Monte Carlo scheme, are engaged for this purpose. It is implemented with the aid of the polynomial bases for the pressure-velocity-temperature (PVT) solutions, for which the weighted least squares method (WLSM) algorithm is applicable.
View Article and Find Full Text PDFEntropy (Basel)
January 2025
School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China.
Optical Coherence Tomography (OCT) is a crucial imaging modality for diagnosing and monitoring retinal diseases. However, the accurate segmentation of fluid regions and lesions remains challenging due to noise, low contrast, and blurred edges in OCT images. Although feature modeling with wide or global receptive fields offers a feasible solution, it typically leads to significant computational overhead.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!