The phosphatase Cdc14 is required for mitotic exit in budding yeast. Cdc14 promotes Cdk1 inactivation by targeting proteins that, when dephosphorylated, trigger degradation of mitotic cyclins and accumulation of the Cdk1 inhibitor, Sic1. Cdc14 is sequestered in the nucleolus during most of the cell cycle but is released into the nucleus and cytoplasm during anaphase. When Cdc14 is not properly sequestered in the nucleolus, expression of the S-phase cyclin Clb5 is required for viability, suggesting that the antagonizing activity of Clb5-dependent Cdk1 specifically is necessary when Cdc14 is delocalized. We show that delocalization of Cdc14 combined with loss of Clb5 causes defects in DNA replication. When Cdc14 is not sequestered, it efficiently dephosphorylates a subset of Cdk1 substrates including the replication factors, Sld2 and Dpb2. Mutations causing Cdc14 mislocalization interact genetically with mutations affecting the function of DNA polymerase epsilon and the S-phase checkpoint protein Mec1. Our findings suggest that Cdc14 is retained in the nucleolus to support a favorable kinase/phosphatase balance while cells are replicating their DNA, in addition to the established role of Cdc14 sequestration in coordinating nuclear segregation with mitotic exit.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1800703 | PMC |
http://dx.doi.org/10.1128/MCB.01069-06 | DOI Listing |
Int J Mol Sci
November 2024
Instituto de Biología Funcional y Genómica, IBFG, CSIC-USAL, 37007 Salamanca, Spain.
The cell cycle, essential for growth, reproduction, and genetic stability, is regulated by a complex network of cyclins, Cyclin-Dependent Kinases (CDKs), phosphatases, and checkpoints that ensure accurate cell division. CDKs and phosphatases are crucial for controlling cell cycle progression, with CDKs promoting it and phosphatases counteracting their activity to maintain balance. The nucleolus, as a biomolecular condensate, plays a key regulatory role by serving as a hub for ribosome biogenesis and the sequestration and release of various cell cycle regulators.
View Article and Find Full Text PDFTurk J Biol
September 2024
Department of Molecular Biology and Genetics, College of Sciences, Koç University, İstanbul, Turkiye.
Background/aim: The conserved phosphatase Cdc14 facilitates mitotic exit in budding yeast by counteracting mitotic cyclin-dependent kinase activity. Cdc14 is kept in the nucleolus until anaphase onset, when it is released transiently into the nucleoplasm. In late anaphase, Cdc14 is fully released into the cytoplasm upon activation of the mitotic exit network (MEN) to trigger mitotic exit.
View Article and Find Full Text PDFNPJ Syst Biol Appl
October 2024
Division of Systems Biology, Academy of Integrated Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
The cell cycle of budding yeast is governed by an intricate protein regulatory network whose dysregulation can lead to lethal mistakes or aberrant cell division cycles. In this work, we model this network in a Boolean framework for stochastic simulations. Our model is sufficiently detailed to account for the phenotypes of 40 mutant yeast strains (83% of the experimentally characterized strains that we simulated) and also to simulate an endoreplicating strain (multiple rounds of DNA synthesis without mitosis) and a strain that exhibits 'Cdc14 endocycles' (periodic transitions between metaphase and anaphase).
View Article and Find Full Text PDFJ Biol Chem
September 2024
Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA; Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA; Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, USA; Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA. Electronic address:
Cdc14 phosphatases are related structurally and mechanistically to protein tyrosine phosphatases (PTPs) but evolved a unique specificity for phosphoSer-Pro-X-Lys/Arg sites primarily deposited by cyclin-dependent kinases. This specialization is widely conserved in eukaryotes. The evolutionary reconfiguration of the Cdc14 active site to selectively accommodate phosphoSer-Pro likely required modification to the canonical PTP catalytic cycle.
View Article and Find Full Text PDFCell Rep
July 2024
Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA. Electronic address:
In budding yeast, the nucleolus serves as the site to sequester Cdc14, a phosphatase essential for mitotic exit. Nucleolar proteins Tof2, Net1, and Fob1 are required for this sequestration. Although it is known that these nucleolar proteins are SUMOylated, how SUMOylation regulates their activity remains unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!