Calorimetric study on the induction of interdigitated phase in hydrated DPPC bilayers by bioactive labdanes and correlation to their liposome stability: The role of chemical structure.

Chem Phys Lipids

Department of Pharmaceutical Technology, School of Pharmacy, University of Athens, Panepistimiopolis, Zografou 15771, Athens, Greece.

Published: January 2007

Labd-7,13-dien-15-ol (1), labd-13-ene-8alpha,15-diol (2), and labd-14-ene-8,13-diol (sclareol) have been found to exhibit cytotoxic and cytostatic effects. Their partitioning into phospholipid bilayers may induce membrane structure modifications, crucial in the development of liposomes. DSC was used to elucidate the profile of modifications induced in DPPC bilayers by incorporating increasing concentrations of the labdanes. Labdanes 1, 2 and sclareol were incorporated into SUV liposomes composed of DPPC their physicochemical stability was monitored (4 degrees C) and was compared to liposomes incorporating cholesterol. All labdanes strongly affect the bilayer organization in a concentration dependent manner in terms of a decrease of the cooperativity, the fluidization and partially destabilization of the gel phase, the induction of a lateral phase separation and the possible existence of interdigitated domains in the bilayer. The physicochemical stability of liposomes was strongly influenced by the chemical features of the labdanes. The liposomal preparations were found to retain their stability at low labdane concentration (10 mol%), while at higher concentrations up to 30 mol% a profound decrease in intact liposomes occurred, and a possible existence of interdigitated sheets was concluded.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemphyslip.2006.10.004DOI Listing

Publication Analysis

Top Keywords

dppc bilayers
8
physicochemical stability
8
existence interdigitated
8
labdanes
5
liposomes
5
calorimetric study
4
study induction
4
induction interdigitated
4
interdigitated phase
4
phase hydrated
4

Similar Publications

Lipid nanoparticles formed with copolymers are a new and increasingly powerful tool for studying membrane proteins, but the extent to which these systems affect the physical properties of the membrane is not completely understood. This is critical to understanding the caveats of these new systems and screening for structural and functional artifacts that might be caused in the membrane proteins they are used to study. To better understand these potential effects, the fluid properties of dipalmitoylphosphatidylcholine lipid bilayers were examined by electron paramagnetic resonance (EPR) spectroscopy with spin-labeled reporter lipids in either liposomes or incorporated into nanoparticles with the copolymers diisobutylene-maleic acid or styrene maleic acid.

View Article and Find Full Text PDF

Differential Inhibition by Cenobamate of Canonical Human Nav1.5 Ion Channels and Several Point Mutants.

Int J Mol Sci

January 2025

Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.

Cenobamate is a new and highly effective antiseizure compound used for the treatment of adults with focal onset seizures and particularly for epilepsy resistant to other antiepileptic drugs. It acts on multiple targets, as it is a positive allosteric activator of γ-aminobutyric acid type A (GABA) receptors and an inhibitor of neuronal sodium channels, particularly of the late or persistent Na current. We recently evidenced the inhibitory effects of cenobamate on the peak and late current component of the human cardiac isoform hNav1.

View Article and Find Full Text PDF

Plasma membranes are known to segregate into liquid disordered and ordered nanoscale phases, the latter being called lipid rafts. The structure, lipid composition, and function of lipid rafts have been the subject of numerous studies using a variety of experimental and computational methods. Double electron-electron resonance (DEER, also known as PELDOR) is a member of the pulsed dipole EPR spectroscopy (PDS) family of techniques, allowing the study of nanoscale distances between spin-labeled molecules.

View Article and Find Full Text PDF

Eukaryotic plasma membranes exhibit nanoscale lateral lipid heterogeneity, a feature that is thought to be central to their function. Studying these heterogeneities is challenging since few biophysical methods are capable of detecting domains at submicron length scales. We recently showed that cryogenic electron microscopy (cryo-EM) can directly image nanoscale liquid-liquid phase separation in extruded liposomes due to its ability to resolve the intrinsic thickness and electron density differences of ordered and disordered phases.

View Article and Find Full Text PDF

Whey-Derived Antimicrobial Anionic Peptide Interaction with Model Membranes and Cells.

Langmuir

January 2025

Departamento de Química, Catedra de Química Biológica, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.

The present work focuses on one of the possible target mechanisms of action of the anionic antimicrobial peptide β-lg derived from trypsin hydrolysis of β-lactoglobulin. After confirmation of bactericidal activity against a pathogenic Gram(+) strain and demonstration of the innocuousness on a eukaryotic cell line, we investigated the interaction of β-lg with monolayers and bilayers of dpPC and dpPC:dpPG as model membranes of eukaryotic and bacterial membranes, respectively. In monolayers, compared to zwitterionic dpPC, in the negatively charged dpPC-dpPG, β-lg injected into the subphase penetrated up to higher surface pressures and showed greater extents of penetration with increasing concentration in the subphase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!