Oxidation inhibits amyloid fibril formation of transthyretin.

FEBS J

School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia.

Published: December 2006

The role of amino acid side chain oxidation in the formation of amyloid assemblies has been investigated. Chemical oxidation of amino acid side chains has been used as a facile method of introducing mutations on protein structures. Oxidation promotes changes within tertiary contacts that enable identification of residues and interactions critical in stabilizing protein structures. Transthyretin (TTR) is a soluble human plasma protein. The wild-type (WT) and several of its variants are prone to fibril formation, which leads to amyloidosis associated with many clinical syndromes. The effects of amino acid side chain oxidations were investigated by comparing the kinetics of fibril formation of oxidized and unoxidized proteins. The WT and V30M TTR mutant (valine 30 substituted with methionine) were allowed to react over a time range of 10 min to 12 h with hydroxy radical and other reactive oxygen species. In these timescales, up to five oxygen atoms were incorporated into WT and V30M TTR proteins. Oxidized proteins retained their tetrameric structures, as determined by cross-linking experiments. Side chain modification of methionine residues at position 13 and 30 (the latter for V30M TTR only) were dominant oxidative products. Mono-oxidized and dioxidized methionine residues were identified by radical probe mass spectometry employing a footprinting type approach. Oxidation inhibited the initial rates and extent of fibril formation for both the WT and V30M TTR proteins. In the case of WT TTR, oxidation inhibited fibril growth by approximately 76%, and for the V30M TTR by nearly 90%. These inhibiting effects of oxidation on fibril growth suggest that domains neighboring the methionine residues are critical in stabilizing the tetrameric and folded monomer structures.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1742-4658.2006.05532.xDOI Listing

Publication Analysis

Top Keywords

v30m ttr
20
fibril formation
16
amino acid
12
acid side
12
side chain
12
methionine residues
12
protein structures
8
critical stabilizing
8
ttr proteins
8
oxidation inhibited
8

Similar Publications

Real-world tafamidis experience in hereditary transthyretin amyloidosis with peripheral neuropathy in Brazil.

Arq Neuropsiquiatr

January 2025

Universidade Federal do Rio de Janeiro, Hospital Universitário Clementino Fraga Filho, Centro de Estudos em Paramiloidose Antônio Rodrigues de Mello, Rio de Janeiro RJ, Brazil.

Background:  Tafamidis is a kinetic stabilizer that binds to the transthyretin (TTR) gene, inhibiting its dissociation. It is the only disease-modifying treatment for hereditary TTR amyloidosis with peripheral neuropathy (ATTRv-PN) available in the National Therapeutic Form (Formulário Terapêutico Nacional, FTN, in Portuguese) of the Brazilian Unified Health System (Sistema Único de Saúde, SUS, in Portuguese).

Objective:  To assess if the efficacy and safety of tafamidis in the Brazilian real-world experience are comparable to the results of clinical trials.

View Article and Find Full Text PDF

Repurposing of Agrochemicals as ATTRv Amyloidosis Inhibitors.

J Med Chem

January 2025

Graduate School of Innovative Life Science, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan.

Transthyretin (TTR), a plasma protein, undergoes transformation into amyloid fibers, leading to ATTRv amyloidosis, a disease characterized by organ deposition of TTR amyloid fibrils and subsequent organ failure. Developing compounds that bind and kinetically stabilize TTR is a crucial strategy in the treatment of ATTRv amyloidosis. In this study, we narrowed 651 pesticide-related compounds down to 14 possible TTR binders through in silico screening; subsequent in vitro analysis revealed that 7 of them exhibited amyloid fibril formation inhibition activity.

View Article and Find Full Text PDF

Does the structure of transthyretin amyloid fibrils vary depending on the organ of accumulation?

Structure

December 2024

Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan. Electronic address:

In this issue of Structure, Nguyen et al. reveal that amyloid fibrils of the transthyretin (TTR) V30M variant from the heart and nerves of the same patient exhibit structural homogeneity. This finding is crucial for advancing our understanding of V30M-TTR amyloid deposition, which leads to fatal ATTRv amyloidosis.

View Article and Find Full Text PDF

The clinical efficacy of transthyretin (TTR) tetramer stabilisers and gene silencers in addition to liver transplantation has been established for hereditary ATTR (ATTRv) amyloidosis. Accordingly, non-central nervous system (CNS) systemic amyloidosis manifestations, such as peripheral neuropathy and cardiomyopathy, are now being overcome. However, emerging disease-modifying therapeutics have limited effects on CNS amyloidosis since they target the blood-circulating TTR produced in the liver, and not the cerebral spinal fluid (CSF) TTR synthesised in the choroid plexus.

View Article and Find Full Text PDF

Arginine: A potential prophylactic supplement for transthyretin amyloidosis.

Biochem Biophys Res Commun

December 2024

Department of Amyloidosis Research, Faculty of Pharmaceutical Sciences, Nagasaki International University, Huis Ten Bosch, Sasebo, Nagasaki, Japan; Department of Amyloidosis Supporting Center, Sugimura Hospital, Honjo, Chuo-ku, Kumamoto, Japan. Electronic address:

Transthyretin (TTR) is an amyloidogenic protein associated with TTR amyloidosis (ATTR). Dissociation of TTR tetramers into TTR monomers causes TTR misfolding, resulting in amyloid fibril formation and triggering the onset of ATTR. Low-molecular-weight tetrameric TTR stabilizers are potential therapeutic agents to delay ATTR progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!