Using gene chip analyses, we have identified novel neuronal activity-dependent genes. Application of 25 mM KCl to mature (14-day culture) rat cortical neurons resulted in more than 1.5-fold induction of 19 genes and reduction of 42 genes among 1200 neural genes. Changes in the overall gene expression profiles appeared to be related to the reduction of excitability and induction of cellular survival signals. Among the genes identified, three transcriptional modulators [encoding Cbp/p300-interacting transactivator with ED-rich tail 2 (CITED2), CCAAT/enhancer binding protein beta (C/EBPbeta) and neuronal orphan receptor-1, (NOR1)] were newly identified as activity-dependent transcription factors, and two of these (CITED2 and NOR1) were found to be influenced by electroconvulsive shock (ECS). NOR1 was induced in specific brain regions by behavioral activation, such as exposure to a novel environment. Because the brain regions that exhibited the induction of these newly identified neuronal activity-dependent transcriptional modulators were distinct from those showing the induction of previously identified activity-dependent genes such as c-fos, these genes might be useful markers for mapping neuronal activity in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1471-4159.2006.04214.x | DOI Listing |
Ren Fail
December 2025
Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
FASEB J
December 2024
Laboratory of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan.
SUMOylation, the modification of proteins with a small ubiquitin-like modifier (SUMO), is known to regulate various cellular events, including cell division. This process is dynamic, with its status depending on the balance between SUMOylation and deSUMOylation. While the regulation of cell division by sentrin-specific protease (SENP) family proteins through deSUMOylation has been investigated, the role of another deSUMOylase, deSUMOylating isopeptidase 1 (DESI1), remains unknown.
View Article and Find Full Text PDFJ Anim Sci Biotechnol
December 2024
College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
Background: Oxidative stress (OS) is involved in low female fertility by altering multi-omics such as the transcriptome, miRome, and lncRNome in follicular cells and follicular fluid. However, the mechanism by which OS affects multi-omics dynamics remains largely unknown. Here, we report that OS induces lncRNome dynamics in sow granulosa cells (sGCs), which is partially dependent on the transcription factor activity of its effector, FoxO1.
View Article and Find Full Text PDFFront Mol Neurosci
November 2024
Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland.
Central to the process of axon elongation is the concept of compartmentalized signaling, which involves the A-kinase anchoring protein (AKAP)-dependent organization of signaling pathways within distinct subcellular domains. This spatial organization is also critical for translating electrical activity into biochemical events. Despite intensive research, the detailed mechanisms by which the spatial separation of signaling pathways governs axonal outgrowth and pathfinding remain unresolved.
View Article and Find Full Text PDFTransl Psychiatry
November 2024
Department of Neurosciences, University of New Mexico Health and Sciences Center, Albuquerque, NM, USA.
CircHomer1 is an activity-dependent circular RNA (circRNA) isoform produced from back-splicing of the Homer1 transcript. Homer1 isoforms are well-known regulators of homeostatic synaptic plasticity through post-synaptic density scaffold regulation. Homer1 polymorphisms have been associated with psychiatric diseases including schizophrenia (SCZ) and bipolar disorder (BD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!