The structure factors of the ionic liquid mixture Ag(Br(0.7)I(0.3)) at three temperatures, 723, 923, and 1023 K, as well as of the pure molten AgI at 923 K and the pure molten AgBr at 773 and 923 K, were studied experimentally and by means of molecular dynamics simulations. The experiments were carried out using the high intensity total scattering time-of-flight spectrometer, HIT-II, at the KENS spallation neutron source in Japan. The experimental data are very reliable, with the possible exception of the small momentum transfer region, whose accessibility is limited by neutron energy and detector positions. The simulations made use of the semiempirical rigid ion potentials of the Vashishta-Rahman [Phys. Rev. Lett. 40, 1337 (1978)] type using a new set of parameters appropriate for the mixture. Within the known constraints of the pairwise rigid ion potentials, the simulated structure factors are in fair agreement with experiment. The results for the pair distribution functions suggest that the molten mixture retains the superionic character found in previous calculations of both the AgI and AgBr melts. This suggestion is confirmed by the results for the self-diffusion coefficients. Values obtained for the ionic conductivities are also presented.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2386161DOI Listing

Publication Analysis

Top Keywords

molecular dynamics
8
dynamics simulations
8
molten mixture
8
mixture agbr07i03
8
structure factors
8
pure molten
8
rigid ion
8
ion potentials
8
neutron diffraction
4
diffraction data
4

Similar Publications

Limited treatment options are available for bladder cancer (BCa) resulting in extremely high mortality rates. Cyclovirobuxine D (CVB-D), a naturally alkaloid, reportedly exhibits notable antitumor activity against diverse tumor types. However, its impact on CVB-D on BCa and its precise molecular targets remain unexplored.

View Article and Find Full Text PDF

Desalination of seawater by forward osmosis is a technology potentially able to address the global water scarcity problem. The major challenge limiting its widespread practical application is the design of a draw solute that can be separated from water by an energetically efficient process and then reused for the next cycle. Recent experiments demonstrate that a promising draw solute for forward-osmosis desalination is tetrabutylphosphonium 2,4,6-trimethylbenzenesulfonate ([P][TMBS]).

View Article and Find Full Text PDF

Ion Networks in Water-based Li-ion Battery Electrolytes.

Acc Chem Res

January 2025

Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea.

ConspectusWater-in-salt electrolytes (WiSEs) are promising electrolytes for next-generation lithium-ion batteries (LIBs), offering critical advantages like nonflammability and improved safety. These electrolytes have extremely high salt concentrations and exhibit unique solvation structures and transport mechanisms dominated by the formation of ion networks and aggregates. These ion networks are central to the performance of WiSEs, govern the transport properties and stability of the electrolyte, deviating from conventional dilute aqueous or organic electrolytes.

View Article and Find Full Text PDF

Lithium-tellurium (Li-Te) batteries are gaining attention as a promising next-generation energy storage system due to their superior electrical conductivity and high volumetric capacity compared to sulfur and selenium. Tellurium's unique properties, such as suitable redox potential, excellent conductivity, high volumetric capacity, and greatest stability, position it as a strong candidate for negative electrode materials. This study explores the potential of metal tellurides, specifically CuTe and FeTe monolayers, as effective tellurium host materials, leveraging their polar interactions with lithium polytellurides.

View Article and Find Full Text PDF

goChem: A Composable Library for Multi-Scale Computational Chemistry Data Analysis.

J Comput Chem

January 2025

Departmento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile.

Data analysis is a major task for Computational Chemists. The diversity of modeling tools currently available in Computational Chemistry requires the development of flexible analysis tools that can adapt to different systems and output formats. As a contribution to this need, we report the implementation of goChem, a versatile open-source library for multiscale analysis of computational chemistry data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!