AI Article Synopsis

  • Singlet molecular oxygen (1O2) plays a significant role in various fields, including atmospheric science, biology, and organic synthesis, drawing considerable interest from researchers like Christopher S. Foote.
  • In the 1960s, Foote and Wexler provided evidence for the generation of singlet oxygen through both photochemical reactions and chemical reactions, helping to establish its importance in dye-sensitized photooxidation processes.
  • Over time, the understanding of singlet oxygen's role in various applications, such as photodynamic therapy and plant defense mechanisms, has gained recognition and validation.

Article Abstract

The chemistry of singlet molecular oxygen [1O2 (1Delta g)], its importance in atmospheric, biological, and therapeutic processes, and its use as a reagent in organic synthesis have been of considerable interest. Many aspects of singlet oxygen chemistry have emanated from the work of Christopher S. Foote and co-workers. Singlet oxygen is a historically interesting molecule with an unusual story connected with its discovery. Foote and Wexler conducted experiments in the 1960s where evidence was obtained supporting 1O2 generation via two independent routes: (1) a photochemical reaction (dye-sensitized photooxidation) and (2) a chemical reaction (NaOCl with H2O2). An important factor in the discovery of 1O2 as the critical reaction intermediate in dye-sensitized photooxygenations was Foote's reassessment of the chemical literature of the 1930s, when 1O2 was suggested to be a viable intermediate in dye-sensitized photooxidation reactions. Experiments that used silica gel beads provided evidence for a volatile diffusible oxidant such as 1O2. However, a contemporaneous quarrel surrounded this early work, and the possible existence of solution-phase 1O2 was ignored for over 2 decades. Not long after Foote's initial studies were published in 1964, the idea of singlet oxygen as an intermediate in photooxidation chemistry gained increasing recognition and verification in organic, gas phase, and biological processes. There are many documented impacts that 1O2 has had and continues to have on biology and medicine, for example, photodynamic therapy and plant defenses.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ar050191gDOI Listing

Publication Analysis

Top Keywords

singlet oxygen
16
oxygen [1o2
8
[1o2 1delta
8
dye-sensitized photooxidation
8
intermediate dye-sensitized
8
1o2
6
singlet
5
oxygen
5
christopher foote's
4
foote's discovery
4

Similar Publications

Membraneless organelles (MLOs) formed via protein phase separation have garnered significant attention recently due to their relevance to cellular physiology and pathology. However, there is a lack of tools available to study their behavior and control their bioactivity in complex biological systems. This chapter describes a new optogenetic tool based on water-soluble chlorophyll protein (WSCP), a red light-induced singlet oxygen-generating protein, to control synthetic MLOs.

View Article and Find Full Text PDF

Heavy atom effects on synthetic pyranoanthocyanin analogues.

Photochem Photobiol

December 2024

Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.

Pyranoflavylium cations are synthetic analogues of pyranoanthocyanins, the much more color-stable compounds that are formed spontaneously from grape anthocyanins during the maturation of red wines. In the present work, our studies of the photophysical properties of pyranoanthocyanin analogues are extended to include nine pyranoflavylium cations substituted with one or two bromo and/or iodo heavy atoms. The room temperature fluorescence, 77 K fluorescence and phosphorescence, triplet formation in solution, and sensitized singlet oxygen formation, with excited state acidity suppressed by the addition of trifluoroacetic acid, are compared to those of similar pyranoflavylium cations that do not contain a heavy atom.

View Article and Find Full Text PDF

Photosensitizers and pigments in raw meat such as porphyrins, riboflavin, and myoglobin after incorporation with light beam prompt the generation of singlet oxygen (O) from triplet oxygen (O) and cause oxidative rancidity of meat products. In this study, the results of photooxidation reactions of sheep erythrocyte (red blood cell) model as a model rich in hemoglobin and phospholipids bilayer, and oleic acid model were obtained by H NMR spectroscopy, TBARS assay, and iodometric titration. In both models, the rate of lipid photooxidation in the presence of hydroalcoholic extracts of Turmeric ( L.

View Article and Find Full Text PDF

Density functional theory (DFT) calculations indicate that [Co(HO)] reacts with two HO molecules to form [(HO)Co(OOH)(HO)] reactant complexes, which decompose through three distinct pathways depending on the relative orientation between the coordinated OOH and HO ligands. The reactive intermediates produced via these activation pathways include hydroperoxyl (OOH)/superoxide (O) radicals, singlet oxygen (O), and Co(III) species [(HO)Co(O)], [(HO)Co(OH)], and [(HO)Co(OH)]. The Co(III) species display from moderate to strong oxidizing abilities that have long been overlooked.

View Article and Find Full Text PDF

[Simultaneous Removal of Antibiotic-resistant Bacteria, Genes, and Inhibition of Horizontal Transfer using Vis-rGO-CNCF-enhanced Peroxymonosulfate Activation Process].

Huan Jing Ke Xue

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200082, China.

As emerging contaminants, antibiotic-resistant bacteria (ARBs) and antibiotic-resistant genes (ARGs) pose a serious threat to human health and ecological security. Here, a reduced graphene oxide and g-CN co-doped copper ferrite (rGO-CNCF) were synthesized. The composite material was characterized using XRD, FTIR, XPS, SEM-EDS, TEM, and DRS analysis methods, and a visible-light-assisted rGO-CNCF-activated PMS system was constructed for the removal of ARB and ARGs in water.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!