Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A central event in the formation of infectious prions is the conformational change of a host-encoded glycoprotein, PrPC, into a pathogenic isoform, PrPSc. However, the molecular requirements for efficient PrP conversion remain unknown. In this study, we employed the recently developed protein misfolding cyclic amplification (PMCA) and scrapie cell assay (SCA) techniques to study the role of N-linked glycosylation on prion formation in vitro. The results show that unglycosylated PrPC molecules are required to propagate mouse RML prions, whereas diglycosylated PrPC molecules are required to propagate hamster Sc237 prions. Furthermore, the formation of Sc237 prions is inhibited by substoichiometric levels of hamster unglycosylated PrPC molecules. Thus, interactions between different PrPC glycoforms appear to control the efficiency of prion formation in a species-specific manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi061526k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!