The initial steps of an enantioselective Diels-Alder reaction catalyzed by a CuII-bissulfoximine complex were followed by EXAFS (EXAFS=extended X-ray absorption fine structure), EPR (EPR=electron paramagnetic resonance) spectroscopy (CW-EPR, FID-detected EPR, pulse ENDOR, HYSCORE; CW=continuous wave; ENDOR=electron nuclear double resonance; HYSCORE=hyperfine sublevel correlation; FID=free induction decay), and UV-visible spectroscopy. The complexes formed between the parent CuX2 (X=Cl-, Br-, TfO-, SbF6-) salts, the chiral bissulfoximine ligand (S,S)-1, and N-(1-oxoprop-2-en-1-yl)oxazolidin-2-one (2) as the substrate in CH2Cl2 were investigated in frozen and fluid solution. In all cases, penta- or hexacoordinated CuII centers were established. The complexes with counterions indicating high stereoselectivity (TfO- and SbF6-) reveal one unique species in which substrate 2 binds to pseudoequatorial positions (via O atoms), shifting the counterions to axial locations. On the other hand, those lacking stereoselectivity (X=Cl- and Br-) form two species in which the parent halogen anions remain at equatorial positions preventing the formation of geometries compatible with those found for X=TfO- and SbF6-.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.200601086 | DOI Listing |
J Org Chem
January 2025
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.
A cascade reaction of Pd(II)/dppben-catalyzed [3 + 2] cycloaddition of -aryl nitrones with allenoates and sequential reduction has been developed for the synthesis of functionalized benzazepines bearing three contiguous carbon stereocenters in moderate to good yields ranging from 15 to 82% and high diastereoselectivity. The obtained benzazepines could be converted into various benzazepine scaffolds, and an estrone-derived benzazepine scaffold was prepared over four steps from estrone. More importantly, chiral benzazepine bearing three contiguous carbon stereocenters could be obtained in 88% ee value with chiral auxiliary.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Catalysis Laboratory, School of Chemistry, University of Hyderabad, Hyderabad-500 046, India.
Benzothiazole and benzoxazole heterocyclic ring-containing 1,4,5-trisubstituted-1,2,3-triazoles are well known for their wide range of applications in pharmaceutical and medicinal chemistry, but their high-yielding metal-free selective synthesis has always remained challenging as no comprehensive simple protocol has been outlined to date. Owing to their structural and medicinal importance, herein, we synthesized various benzothiazole and benzoxazole heterocyclic ring-containing 1,4,5-trisubstituted-1,2,3-triazoles in high to excellent yields with chemo-/regioselectivity from the library of benzothiazole/benzoxazole-ketones and aryl/alkyl-azides through an enolate-mediated organocatalytic azide-ketone [3 + 2]-cycloaddition under ambient conditions in a few hours. The commercial availability or quick synthesis of the starting materials and catalysts, a diverse substrate scope, chemo-/regioselectivity, quick synthesis of pharmaceutically active known compounds and their analogues, and numerous medicinal applications of functionalized benzothiazole/benzoxazole-triazoles are the key attractions of this metal-free organo-click reaction.
View Article and Find Full Text PDFJ Org Chem
January 2025
Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key La-boratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China.
We report a base-promoted, metal-free multicomponent tandem reaction, involving a [4 + 1 + 1] cycloaddition process between -substituted nitroarenes, aldehydes, and ammonium salts. Modifying the substituents on the nitroaromatic compounds effectively provides structurally diverse 2-substituted and 4-alkenylquinazolines with good to excellent yields (77%-90% and quinazoline 51 examples) and high tolerance for various inorganic ammonium salts (13 examples, such as NH·HO, NHCl, and NHHF). A new method for constructing 2,4-substituted quinazoline compounds with high selectivity from simple nitrogen source compounds was developed, and the reaction can be scaled up to a gram scale.
View Article and Find Full Text PDFNat Commun
January 2025
College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, P. R. China.
The enantioselective domino Heck/cross-coupling has emerged as a powerful tool in modern chemical synthesis for decades. Despite significant progress in relative rigid skeleton substrates, the implementation of asymmetric Heck/cross-coupling cascades of highly flexible haloalkene substrates remains a challenging and and long-standing goal. Here we report an efficient asymmetric domino Heck/Tsuji-Trost reaction of highly flexible vinylic halides with 1,3-dienes enabled by palladium catalysis.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China. Electronic address:
The inverse electron demand Diels-Alder (IEDDA) cycloaddition between tetrazines and strained dienophiles is recognized as a fast and specific reaction. The integrating tetrazines and strained dienophiles onto the backbone of polysaccharides yield appropriate water-soluble precursors for IEDDA cycloaddition. Due to the high specificity of the IEDDA reaction and its outstanding cytocompatibility, a range of cargos (live cells, peptides and pharmaceuticals) can be effectively encapsulated in polysaccharide solutions throughout the hydrogel formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!