Isoprenoid secondary metabolites are a rich source of commercial products that have not been fully explored. At present, there are isoprenoid products used in cancer therapy, the treatment of infectious diseases, and crop protection. All isoprenoids share universal prenyl diphosphate precursors synthesized via two distinct pathways. From these universal precursors, the biosynthetic pathways to specific isoprenoids diverge resulting in a staggering array of products. Taking advantage of this diversity has been the focus of much effort in metabolic engineering heterologous hosts. In addition, the engineering of the mevalonate pathway has increased levels of the universal precursors available for heterologous production. Finally, we will describe the efforts to produce to commercial terpenoids, paclitaxel and artemisinin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-006-0593-1 | DOI Listing |
Nat Commun
January 2025
Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
Creating and maintaining a favorable microenvironment for electrocatalytic CO reduction reaction (eCORR) is challenging due to the vigorous interactions with both gas and electrolyte solution during the electrocatalysis. Herein, to boost the performance of eCORR, a unique synthetic method that deploys the in situ reduction of precoated precursors is developed to produce activated Ag nanoparticles (NPs) within the gas diffusion layer (GDL), where the thus-obtained Ag NPs-Skeleton can block direct contact between the active Ag sites and electrolyte. Specifically, compared to the conventional surface loading mode in the acidic media, our freestanding and binder free electrode can achieve obvious higher CO selectivity of 94%, CO production rate of 23.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China.
Background: B7-H3 or CD276 is notably overexpressed in various malignant tumor cells in humans, with extremely high expression rates. The development of a radiotracer that targets B7-H3 may provide a universal tumor-specific imaging agent and allow the noninvasive assessment of the whole-body distribution of B7-H3-expressing lesions.
Methods: We enhanced and optimized the structure of an affibody (ABY) that targets B7-H3 to create the radiolabeled radiotracer [68Ga]Ga-B7H3-BCH, and then, we conducted both foundational experiments and clinical translational studies.
Front Microbiol
January 2025
Department of Pulmonary and Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Monoterpene -pinene exhibits significant potential as an alternative fuel, widely recognized for its affordability and eco-friendly nature. It demonstrates multiple biological activities and has a wide range of applications. However, the limited supply of pinene extracted from plants poses a challenge in meeting the needs of the aviation industry and other sectors.
View Article and Find Full Text PDFAdv Mater
January 2025
Institute for Advanced Materials & Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China.
Laboratory-scale spin-coating techniques are widely employed for fabricating small-size, high-efficiency perovskite solar cells. However, achieving large-area, high-uniformity perovskite films and thus high-efficiency solar cell devices remain challenging due to the complex fluid dynamics and drying behaviors of perovskite precursor solutions during large-area fabrication processes. In this work, a high-quality, pinhole-free, large-area FAPbI perovskite film is successfully obtained via scalable blade-coating technology, assisted by a novel bidirectional Marangoni convection strategy.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russia.
Alkaloids are predominantly nitrogen-containing heterocyclic compounds that are usually isolated from plants, and sometimes from insects or animals. Alkaloids are one of the most important types of natural products due to their diverse biological activities and potential applications in modern medicine. Cyclic imines were chosen as starting compounds for the synthesis of alkaloids due to their high synthetic potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!