Patients with mesial temporal lobe epilepsy (MTLE) have increased basal concentrations of extracellular glutamate in the epileptogenic versus the non-epileptogenic hippocampus. Such elevated glutamate levels have been proposed to underlie the initiation and maintenance of recurrent seizures, and a key question is what causes the elevation of glutamate in MTLE. Here, we explore the possibility that neurons in the hippocampal formation contain higher levels of the glutamate synthesizing enzyme phosphate-activated glutaminase (PAG) in patients with MTLE versus patients with other forms of temporal lobe epilepsy (non-MTLE). Increased PAG immunoreactivity was recorded in subpopulations of surviving neurons in the MTLE hippocampal formation, particularly in CA1 and CA3 and in the polymorphic layer of the dentate gyrus. Immunogold analysis revealed that PAG was concentrated in mitochondria. Double-labeling experiments indicated a positive correlation between the mitochondrial contents of PAG protein and glutamate, as well as between PAG enzyme activity and PAG protein as determined by Western blots. These data suggest that the antibodies recognize an enzymatically active pool of PAG. Western blots and enzyme activity assays of hippocampal homogenates revealed no change in PAG between MTLE and non-MTLE, despite a greatly (>50%) reduced number of neurons in the MTLE hippocampal formation compared to non-MTLE. Thus, the MTLE hippocampal formation contains an increased concentration and activity of PAG per neuron compared to non-MTLE. This increase suggests an enhanced capacity for glutamate synthesis-a finding that might contribute to the disrupted glutamate homeostasis in MTLE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00401-006-0158-5 | DOI Listing |
Aging Dis
January 2025
Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile.
The gut-brain axis is a bidirectional communication pathway that modulates cognitive function. A dysfunctional gut-brain axis has been associated with cognitive impairments during aging. Therefore, we propose evaluating whether modulation of the gut microbiota through fecal microbiota transplantation (FMT) from young-trained donors (YT) to middle-aged or aged mice could enhance brain function and cognition in old age.
View Article and Find Full Text PDFAlzheimer's disease (AD), a leading cause of dementia, is associated with significant respiratory dysfunctions. Our study explores the role of astrogliosis in the brainstem retrotrapezoid nucleus (RTN), a key breathing regulatory center, and its impact on breathing control and AD pathology in mice. Using Tg-2576 AD and wild-type mice, we investigated the effect of silencing the transforming growth factor-beta receptor II (TGFβR II) in the RTN.
View Article and Find Full Text PDFBehav Neurol
January 2025
Department of Animal Biology and Physiology, University of Yaoundé I, Yaoundé, Cameroon.
Amnesia is a memory disorder marked by the inability to recall or acquire information. Hence, drugs that also target the neurogenesis process constitute a hope to discover a cure against memory disorders. This study is aimed at evaluating the antiamnesic and neurotrophic effects of the aqueous extract of () on in vivo and in vitro models of excitotoxicity.
View Article and Find Full Text PDFBiol Trace Elem Res
January 2025
Laboratory Functional Physiology and Bio-Resources Valorisation, Higher Institute of Biotechnology of Beja, University of Jendouba, Avenue Habib Bourguiba BP 382, 9000, Beja, Tunisia.
Iron overload has been shown to have deleterious effects in the brain through the formation of reactive oxygen species, which ultimately may contribute to neurodegenerative disorders. Accordingly, rodent studies have indicated that systemic administration of iron produces excess iron in the brain and results in behavioral and cognitive deficits. To what extent cognitive abilities are affected and which neurobiological mechanisms underlie those deficits remain to be more fully characterized.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea.
Our naturalistic experiences are organized into memories through multiple processes, including novelty encoding, memory formation, and retrieval. However, the neural mechanisms coordinating these processes remain elusive. Using fMRI data acquired during movie viewing and subsequent narrative recall, we examine hippocampal neural subspaces associated with distinct memory processes and characterized their relationships.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!