To evaluate multivoxel (31)P-MR spectroscopy (MRS) for assessment of energy metabolism in patients with myocardial infarction (MI) in correlation to left ventricular (LV) wall thickness and the outcome of revascularization. Thirty patients with subacute anterior myocardial infarction and planned revascularization were enrolled. 3D-chemical shift imaging was applied to determine PCr/ATP ratios in two areas: infarcted/anterior and noninfarcted/septal myocardium. MRI was used to evaluate LV function and wall thickness, and was repeated 6 months after revascularization to assess myocardial viability. Fifteen volunteers were controls. Fifteen patients showed normalization of wall motion abnormalities after revascularization (Group 1; viable), 15 not (Group 2; non-viable). Regarding infarcted/anterior myocardium, Group 2 had lower PCr/ATP ratios (0.81 +/- 0.60 vs 1.17 +/- 0.25), and PCr/ATP ratios were reduced in both groups compared to controls (1.45 +/- 0.29). Regarding noninfarcted/septal myocardium, again Group 2 had lower ratios (0.93 +/- 0.53 vs 1.31 +/- 0.38); however, compared to controls (1.51 +/- 0.32) a reduction of PCr/ATP ratios was only found in Group 2. For both myocardial regions, no correlations between PCr/ATP ratios and LV wall thickness were detected. The more severe energetic alteration in irreversibly damaged myocardium is not an effect of differences of wall thinning. Additional alterations of noninfarcted, adjacent myocardium can be detected.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00330-006-0492-y | DOI Listing |
Am J Obstet Gynecol
November 2024
University of Leeds, Leeds Institute of Cardiovascular and Metabolic Medicine, LS2 9JT, United Kingdom.
Background: GDM and preeclampsia are common complications of pregnancy, for which overweight/obesity is a common risk factor. Both conditions are associated with a two-to-four-fold increase in future incident heart failure, which may be linked to early maladaptive myocardial changes.
Objectives: To determine maternal myocardial structural, functional, and energetic responses to pregnancies complicated by gestational diabetes mellitus (GDM) or preeclampsia compared to healthy pregnancies (HP) at third-trimester of pregnancy and twelve-months postpartum.
Transpl Int
July 2024
Aix-Marseille Univ., CNRS UMR 7339, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), Marseille, France.
Type 1 diabetes mellitus (T1DM) is the most severe form of diabetes, which is characterized by absolute insulin deficiency induced by the destruction of pancreatic beta cells. The aim of this study was to evaluate the effect of a structural analogue of apelin-12 ((NαMe)Arg-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Nle-Pro-Phe-OH, metilin) on hyperglycemia, mitochondrial (MCh) respiration in permeabilized cardiac left ventricular (LV) fibers, the myocardial energy state, and cardiomyocyte membranes damage in a model of streptozotocin (STZ) diabetes in rats. Metilin was prepared by solid-phase synthesis using the Fmoc strategy and purified using HPLC.
View Article and Find Full Text PDFSci Rep
March 2024
Department of Radiology, Weill Cornell Medicine, New York, NY, USA.
Front Physiol
January 2024
Oxford Centre for Clinical MR Research (OCMR), RDM Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom.
P magnetic resonance spectroscopic imaging (P MRSI) is a powerful technique for investigating the metabolic effects of treatments for heart failure , allowing a better understanding of their mechanism of action in patient cohorts. Unfortunately, cardiac P MRSI is fundamentally limited by low SNR, which leads to compromises in acquisition, such as no cardiac or respiratory gating or low spatial resolution, in order to achieve reasonable scan times. Spectroscopy with linear algebra modeling (SLAM) reconstruction may be able to address these challenges and therefore improve repeatability by incorporating a segmented localizer into the reconstruction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!