Endogenous opioid systems are implicated in the reinforcing effects of ethanol consumption. For example, delta opioid receptor (DOR) knockout (KO) mice show greater ethanol consumption than wild-type (WT) mice (Roberts et al., 2001). To explore the neurobiological correlates underlying these behaviors, we examined effects of acute ethanol application in brain slices from DOR KO mice using whole-cell patch recording techniques. We examined the central nucleus of amygdala (CeA) because the CeA is implicated in alcohol reinforcement (Koob et al., 1998). We found that the acute ethanol effects on GABA(A) receptor-mediated inhibitory postsynaptic currents (IPSCs) were greater in DOR KO mice than in WT mice. Ethanol increased the frequency of miniature IPSCs (mIPSCs) significantly more in DOR KO mice than in WT mice. In CeA of WT mice, application of ICI 174864 [[allyl]2-Tyr-alpha-amino-isobutyric acid (Aib)-Aib-Phe-Leu-OH], a DOR inverse agonist, augmented ethanol actions on mIPSC frequency comparable with ethanol effects seen in DOR KO mice. Superfusion of the selective DOR agonist D-Pen(2),D-Pen(5)-enkephalin decreased the mean frequency of mIPSCs; this effect was reversed by the DOR antagonist naltrindole. These findings suggest that endogenous opioids may reduce ethanol actions on IPSCs of CeA neurons in WT mice through DOR-mediated inhibition of GABA release and that the increased ethanol effect on IPSCs in CeA of DOR KO mice could be, at least in part, due to absence of DOR-mediated inhibition of GABA release. This result supports the hypothesis that endogenous opioid peptides modulate the ethanol-induced augmentation of GABA(A) receptor-dependent circuitry in CeA (Roberto et al., 2003).

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.106.112722DOI Listing

Publication Analysis

Top Keywords

dor mice
20
ethanol actions
12
mice
11
ethanol
10
dor
9
delta opioid
8
endogenous opioid
8
ethanol consumption
8
acute ethanol
8
ethanol effects
8

Similar Publications

Impacts of hnRNP A1 Splicing Inhibition on the Brain Remyelination Proteome.

J Neurochem

January 2025

Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.

Oligodendrocytes, the myelinating cells in the central nervous system, are implicated in several neurological disorders marked by dysfunctional RNA-binding proteins (RBPs). The present study aimed at investigating the role of hnRNP A1 in the proteome of the corpus callosum, prefrontal cortex, and hippocampus of a murine cuprizone-induced demyelination model. Right after the cuprizone insult, we administered an hnRNP A1 splicing activity inhibitor and analyzed its impact on brain remyelination by nanoESI-LC-MS/MS label-free proteomic analysis to assess the biological processes affected in these brain regions.

View Article and Find Full Text PDF

Objective: To study the relationship between FK506-binding protein 51 (FKBP51) and ovarian aging and/or diminished ovarian reserve (DOR) in human ovaries by comparing FKBP51 levels in granulosa (GC) and cumulus cells (CC), collected during controlled ovarian stimulation (COS) from women of advanced reproductive age and/or with a diagnosis of DOR with that of young women with normal ovarian reserve. To explore the association between increased FKBP51 expression and human ovarian aging further, expression of FKBP51 was compared in ovarian stroma of post-menopausal versus pre-menopausal women. Lastly, this relation was further queried by comparing ovarian expression of several collagen genes as markers of ovarian fibrosis in 14-month-old wild type (Fkbp5) and Fkbp5 knockout (Fkbp5) mice.

View Article and Find Full Text PDF

Chemotherapy-induced diminished murine ovarian reserve model and impact of low-dose chemotherapy on fertility.

F S Sci

January 2025

Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium; Gynecology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium. Electronic address:

Objective: To establish a murine model of chemotherapy-induced diminished ovarian reserve (DOR) and investigate residual fertility after chemotherapy exposure.

Design: Two different chemotherapy protocols were tested to establish a valid DOR model by comparing follicle densities in mice given either protocol versus physiological solution. An ovarian stimulation protocol was then selected from among different gonadotropins by counting the number of day-2 embryos obtained from normal mice.

View Article and Find Full Text PDF

Chronic stress can adversely affect the female reproductive endocrine system, potentially leading to disorders and impairments in ovarian function. However, current research lacks comprehensive understanding regarding the biochemical characteristics and underlying mechanisms of ovarian damage induced by chronic stress. We established a stable chronic unpredictable stress (CUS)-induced diminished ovarian reserve (DOR) animal model.

View Article and Find Full Text PDF

Genetic loss of Uchl1 leads to female infertility by affecting oocyte quality and follicular development.

Mol Cell Endocrinol

February 2025

Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Clinical Medical School, Fudan University, Shanghai, China. Electronic address:

Research Question: Ubiquitin C-terminal hydrolase L1 (UCHL1) is a deubiquitinating enzyme specifically highly expressed in the brain and gonads. Inhibition of UCHL1 hydrolase activity impairs oocyte maturation. Uchl1 knockout mice exhibit reproductive dysfunction, but the underlying pathogenesis remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!