Electrocommunication signals of electric fish vary across species, sexes and individuals. The diversity of these signals and the relative simplicity of the neural circuits controlling them make them a model well-suited for studying the mechanisms, evolution and sexual differentiation of behavior. In most wave-type gymnotiform knifefishes, electric organ discharge (EOD) frequency and EOD modulations known as chirps are sexually dimorphic. In the most speciose gymnotiform family, the Apteronotidae, EOD frequency is higher in males than females in some species, but lower in males than females in others. Sex differences in EOD frequency and chirping, however, have been examined in only three apteronotid species in a single genus, Apteronotus. To understand the diversity of electrocommunication signals, we characterized these behaviors in another genus, Adontosternarchus. Electrocommunication signals of Adontosternarchus devenanzii differed from those of Apteronotus in several ways. Unlike in Apteronotus, EOD frequency was not sexually dimorphic in A. devenanzii. Furthermore, although A. devenanzii chirped in response to playbacks simulating conspecific EODs, the number of chirps did not vary with different stimulus frequencies. A. devenanzii chirps also differed in structure from Apteronotus chirps. Whereas Apteronotus species produce functionally distinct chirp types differing in frequency modulation (FM), A. devenanzii produced only high-frequency chirps that had either single or multiple frequency peaks. Males produced more multi-peaked chirps than females. Thus, the temporal structure of chirps, rather than the amount of FM, delineated chirp types in A. devenanzii. Our results demonstrate that the structure, function and sexual dimorphism of electrocommunication signals are evolutionary labile in apteronotids and may be useful for understanding the diversity of sexually dimorphic behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.02579DOI Listing

Publication Analysis

Top Keywords

electrocommunication signals
20
eod frequency
16
sexually dimorphic
12
sexual dimorphism
8
dimorphism electrocommunication
8
electric fish
8
adontosternarchus devenanzii
8
males females
8
chirp types
8
devenanzii
7

Similar Publications

Since the pioneering work by Moeller, Szabo, and Bullock, weakly electric fish have served as a valuable model for investigating spatial and social cognitive abilities in a vertebrate taxon usually less accessible than mammals or other terrestrial vertebrates. These fish, through their electric organ, generate low-intensity electric fields to navigate and interact with conspecifics, even in complete darkness. The brown ghost knifefish is appealing as a study subject due to a rich electric 'vocabulary', made by individually variable and sex-specific electric signals.

View Article and Find Full Text PDF

Differential expression of steroid-related genes across electrosensory brain regions in two sexually dimorphic species of electric knifefish.

Gen Comp Endocrinol

September 2024

Department of Biology, Indiana University, 1001 E 3(rd) St., Bloomington, IN 47405, United States; Center for the Integrative Study of Animal Behavior, Indiana University, 409 N. Park Ave, Bloomington, IN 47405, United States.

The production of communication signals can be modulated by hormones acting on the brain regions that regulate these signals. However, less is known about how signal perception is regulated by hormones. The electrocommunication signals of weakly electric fishes are sexually dimorphic, sensitive to hormones, and vary across species.

View Article and Find Full Text PDF

Androgen receptors rapidly modulate non-breeding aggression in male and female weakly electric fish (Gymnotus omarorum).

Horm Behav

March 2024

Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo, Uruguay. Electronic address:

The South American weakly electric fish, Gymnotus omarorum, displays territorial aggression year-round in both sexes. To examine the role of rapid androgen modulation in non-breeding aggression, we administered acetate cyproterone (CPA), a potent inhibitor of androgen receptors, to both male and females, just before staged agonistic interactions. Wild-caught fish were injected with CPA and, 30 min later, paired in intrasexual dyads.

View Article and Find Full Text PDF

Evolution of androgen receptors contributes to species variation in androgenic regulation of communication signals in electric fishes.

Mol Cell Endocrinol

December 2023

Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA. Electronic address:

Hormones and receptors coevolve to generate species diversity in hormone action. We compared the structure and function of androgen receptors (ARs) across fishes, with a focus on ARs in ghost knifefishes (Apteronotidae). Apteronotids, like many other teleosts, have two ARs (ARα and ARβ).

View Article and Find Full Text PDF

BECS-II: an updated bio-inspired electrocommunication system for small underwater robots.

Bioinspir Biomim

September 2023

State Key Laboratory for Turbulence and Complex Systems, Intelligent Biomimetic Design Lab, College of Engineering, Peking University, Beijing 100871, People's Republic of China.

Some weakly electric fish can use electric signals to interact and communicate with each other in dark and complex underwater environments where traditional underwater communication fails. In our previous work, we developed a bio-inspired electrocommunication system (BECS) that serves as an effective alternative to traditional methods in this challenging underwater scenario performing communication at a speed of approximately 1200 bps (bits per second) within approximately 3 m. In this study, a novel underwater wireless communication system (BECS-II) is proposed to upgrade the BECS with much better performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!