Low-level mechanisms in vertebrate vision are sensitive to line orientation. Here we investigate orientation sensitivity in the cuttlefish Sepia pharaonis, by allowing animals to settle on stripe patterns. When camouflaging themselves cuttlefish are known to be sensitive to image parameters such as contrast and spatial scale, but we find no effect of background orientation on the patterns displayed. It is nonetheless clear that the animals see orientation, because they prefer to rest with the body-axis perpendicular to the stripes. We consider three possible mechanisms to account for this behaviour. Firstly, that the body patterns are themselves oriented, and that the cuttlefish align themselves to aid static camouflage. This is unlikely, as the patterns displayed have no dominant orientation at any spatial scale. A second possibility is that motion camouflage favours alignment of the body orthogonal to background stripes, and we suggest how this alignment can minimise motion signals produced by occlusion. Thirdly we show that cuttlefish prefer to rest with their body-axis parallel to the water flow, and it is possible that they use visual patterns such as sand ripples to determine water flow.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.02580 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Materials Design and Innovation, University at Buffalo, Buffalo, New York 14260-1660, United States.
This study presents a hybrid microfiltration technology designed for high-performance lead (Pb(II)) remediation, especially from aqueous solutions with high Pb(II) concentrations, by utilizing two-dimensional (2D) TiCT-MXene layers deposited on dry mycelium membranes. The hybrid TiCT-MXene/mycelium (MyMX) membranes were fabricated via a single-step electrochemical deposition (ECD) technique, which enabled a uniform coating of 2D TiCT-MXene onto individual hyphal fibers of a prefabricated mycelium membrane. Optimized ECD parameters for high Pb(II) uptake were identified using scanning electron microscopy and energy-dispersive X-ray spectroscopy.
View Article and Find Full Text PDFSci Rep
January 2025
State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430,072, China.
Coordinating the downstream ecological demand and the power generation demand of hydropower stations is an important task in the operation of reservoirs, and how to evaluate the ecological satisfaction of the scheduling process is a difficult problem that needs to be solved urgently. A multi-objective optimal reservoir scheduling model was constructed to coordinate the spawning flow demand of " Four Major Chinese Carps"; The model takes the maximum power generation and the maximum membership degree of downstream river ecological water demand as the objective functions, and uses the dynamic programming multi-objective solution algorithm based on penalty factors to solve the problem, and obtains the non-inferior solution set in each scenario. The multilayer entropy-weighted TOPSIS method was used to study the non-inferior solution of the multi-objective scheduling model of the Three Gorges Reservoir, and the satisfactory solution ranking of the river flow rise process, ecological flow-related requirements, and power generation water requirements was obtained under the four schemes including 4d ~ 7d, which improved the reliability of the evaluation results and made up for the shortcomings of the traditional TOPSIS method in terms of hierarchy and weight science.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Nature Conservation, Polish Academy of Sciences, al. Adama Mickiewicza 33, 31- 120, Kraków, Poland.
Identifying macroplastic deposition hotspots in rivers is essential for planning cleanup efforts and assessing the risks to aquatic life and the aesthetic value of river landscapes. Recent fieldwork in mountain rivers has shown that wood jams retain significantly more macroplastic than other emergent surfaces within river channels. Here, we experimentally verify these findings by tracking the deposition of 64 PET bottles after 52-65 days of transport in the mid-mountain Skawa River (Polish Carpathians) under low to medium flow conditions.
View Article and Find Full Text PDFSci Rep
January 2025
School of petroleum engineering, Yangtze University, Wuhan, 430100, China.
Given the suboptimal physical properties and distinctive geological conditions of deep coalbed methane reservoirs, any reservoir damage that occurs becomes irreversible. Consequently, the protection of these deep coalbed methane reservoirs is of paramount importance. This study employs experimental techniques such as scanning electron microscopy, X-ray diffraction, and micro-CT imaging to conduct a comprehensive analysis of the pore structure, mineral composition, fluid characteristics, and wettability of coal seams 3# and 15# in the northern Qinshui Basin of China.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, Kórnik, 62-035, Poland.
Genetic diversity is crucial to secure the survival and sustainability of ecosystems. Given anthropogenic pressure, as well as the projected alterations connected with the level and circulation of water, riparian forests are of particular concern. In this paper, we assessed the genetic variation of black poplar - one of the keystone tree species of riverine forests.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!