The flight trajectories of fruit flies consist of straight flight segments interspersed with rapid turns called body saccades. Although the saccades are stereotyped, it is not known whether their brief time course is due to a feed-forward (predetermined) motor program or due to feedback from sensory systems that are reflexively activated by the rapid rotation. Two sensory modalities, the visual system and the mechanosensory halteres, are likely sources of such feedback because they are sensitive to angular velocities within the range experienced during saccades. Utilizing a magnetic tether in which flies are fixed in space but free to rotate about their yaw axis, we systematically manipulated the feedback from the visual and haltere systems to test their role in determining the time course of body saccades. We found that altering visual feedback had no significant effect on the dynamics of saccades, whereas increasing and decreasing the amount of haltere-mediated feedback decreased and increased saccade amplitude, respectively. In other experiments, we altered the aerodynamic surface of the wings such that the flies had to actively modify their wing-stroke kinematics to maintain straight flight on the magnetic tether. Flies exhibit such modification, but the control is compromised in the dark, indicating that the visual system does provide feedback for flight stability at lower angular velocities, to which the haltere system is less sensitive. Cutting the wing surface disrupted the time course of the saccades, indicating that although flies employ sensory feedback to modulate saccade dynamics, it is not precise or fast enough to compensate for large changes in wing efficacy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.02583 | DOI Listing |
Curr Biol
January 2025
Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London WC1E 6BT, UK. Electronic address:
Animals construct diverse behavioral repertoires by moving a limited number of body parts with varied kinematics and patterns of coordination. There is evidence that distinct movements can be generated by changes in activity dynamics within a common pool of motoneurons or by selectively engaging specific subsets of motoneurons in a task-dependent manner. However, in most cases, we have an incomplete understanding of the patterns of motoneuron activity that generate distinct actions and of how upstream premotor circuits select and assemble such motor programs.
View Article and Find Full Text PDFeNeuro
January 2025
Research Group for Brain and Cognitive Science, Shahid Beheshti Medical University, Tehran, Iran.
Visual information emerging from the extrafoveal locations is important for visual search, saccadic eye movement control, and spatial attention allocation. Our everyday sensory experience with visual object categories varies across different parts of the visual field which may result in location-contingent variations in visual object recognition. We used a body, animal body, and chair two-forced choice object category recognition task to investigate this possibility.
View Article and Find Full Text PDFFront Neurosci
November 2024
Department of Psychology, University of Liverpool, Liverpool, United Kingdom.
Brain imaging performed in natural settings is known as mobile brain and body imaging (MoBI). One of the features which distinguishes MoBI and laboratory-based experiments is the body posture. Previous studies pointed to mechanical, autonomic, cortical and cognitive differences between upright stance and sitting or reclining.
View Article and Find Full Text PDFJ Am Acad Audiol
May 2024
Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, Maryland.
Background: Oculomotor and reaction time tests are frequently used assessments of vestibular symptoms, traumatic brain injury (TBI), or other neurological disorders in both clinical and research contexts. When interpreting these tests it is important to have a reference interval (RI) as a comparison for what constitutes a typical/expected response; however, the current body of research has only limited information regarding normative ranges calculated according to established standards or for a military-specific sample.
Purpose: The purpose of the present study was to describe RIs for oculomotor and reaction time tests in a cohort of service members and veterans (SMVs) for use as comparators by clinicians and scientists.
Bioengineering (Basel)
October 2024
Department of Civil, Chemical and Environmental Engineering, University of Genoa, Via Montallegro 1, 16145 Genoa, Italy.
Emulsification is a feared and common complication of the use of silicone oil (SO) as tamponade fluid after vitrectomy as it potentially associated with significant risks to ocular health, including elevated intraocular pressure (IOP), glaucoma, corneal and retinal changes. The aim of this study was to investigate the role and interplay of physical factors on the formation of SO emulsion. Experiments were performed in a model of the vitreous chamber with a realistic shape, filled with SO and an aqueous solution containing different concentrations of albumin, an endogenous protein known to modify the interfacial properties between SO and aqueous solutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!